Cargando…
A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings
To address the problem of low fault diagnosis accuracy caused by insufficient fault samples of rolling bearings, a dual-input deep anomaly detection method with zero fault samples is proposed for early fault warning of rolling bearings. First, the main framework of dual-input feature extraction base...
Autores principales: | Kang, Yuxiang, Chen, Guo, Wang, Hao, Pan, Wenping, Wei, Xunkai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535341/ https://www.ncbi.nlm.nih.gov/pubmed/37766068 http://dx.doi.org/10.3390/s23188013 |
Ejemplares similares
-
Rolling Bearing Fault Detection System and Experiment Based on Deep Learning
por: Zhang, Bo
Publicado: (2022) -
A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults
por: Shenfield, Alex, et al.
Publicado: (2020) -
The Robust Multi-Scale Deep-SVDD Model for Anomaly Online Detection of Rolling Bearings
por: Kou, Linlin, et al.
Publicado: (2022) -
Application of Teager–Kaiser Energy Operator in the Early Fault Diagnosis of Rolling Bearings
por: Shi, Xiangfu, et al.
Publicado: (2022) -
Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines
por: Xiang, Ling, et al.
Publicado: (2020)