Cargando…
Using Deep Learning Models to Predict Prosthetic Ankle Torque
Inverse dynamics from motion capture is the most common technique for acquiring biomechanical kinetic data. However, this method is time-intensive, limited to a gait laboratory setting, and requires a large array of reflective markers to be attached to the body. A practical alternative must be devel...
Autores principales: | Prasanna, Christopher, Realmuto, Jonathan, Anderson, Anthony, Rombokas, Eric, Klute, Glenn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535406/ https://www.ncbi.nlm.nih.gov/pubmed/37765769 http://dx.doi.org/10.3390/s23187712 |
Ejemplares similares
-
Development of an ankle torque measurement device for measuring ankle torque
during walking
por: Tanino, Genichi, et al.
Publicado: (2015) -
Autoencoder-based myoelectric controller for prosthetic hands
por: Portnova-Fahreeva, Alexandra A., et al.
Publicado: (2023) -
Peak torque, rate of torque development and average torque of isometric ankle and elbow contractions show excellent test–retest reliability
por: Simpson, Daniel, et al.
Publicado: (2019) -
Dimensionality Reduction of Human Gait for Prosthetic Control
por: Boe, David, et al.
Publicado: (2021) -
Ankle exoskeleton torque controllers based on soleus muscle models
por: Pridham, Paul S., et al.
Publicado: (2023)