Cargando…

An Augmented Sample Selection Framework for Prediction of Anticancer Peptides

Anticancer peptides (ACPs) have promising prospects for cancer treatment. Traditional ACP identification experiments have the limitations of low efficiency and high cost. In recent years, data-driven deep learning techniques have shown significant potential for ACP prediction. However, data-driven p...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Huawei, Shan, Shuai, Fu, Hongliang, Zhu, Chunhua, Liu, Boye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535447/
https://www.ncbi.nlm.nih.gov/pubmed/37764455
http://dx.doi.org/10.3390/molecules28186680
Descripción
Sumario:Anticancer peptides (ACPs) have promising prospects for cancer treatment. Traditional ACP identification experiments have the limitations of low efficiency and high cost. In recent years, data-driven deep learning techniques have shown significant potential for ACP prediction. However, data-driven prediction models rely heavily on extensive training data. Furthermore, the current publicly accessible ACP dataset is limited in size, leading to inadequate model generalization. While data augmentation effectively expands dataset size, existing techniques for augmenting ACP data often generate noisy samples, adversely affecting prediction performance. Therefore, this paper proposes a novel augmented sample selection framework for the prediction of anticancer peptides (ACPs-ASSF). First, the prediction model is trained using raw data. Then, the augmented samples generated using the data augmentation technique are fed into the trained model to compute pseudo-labels and estimate the uncertainty of the model prediction. Finally, samples with low uncertainty, high confidence, and pseudo-labels consistent with the original labels are selected and incorporated into the training set to retrain the model. The evaluation results for the ACP240 and ACP740 datasets show that ACPs-ASSF achieved accuracy improvements of up to 5.41% and 5.68%, respectively, compared to the traditional data augmentation method.