Cargando…

Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi

Industry 4.0 has significantly improved the industrial manufacturing scenario in recent years. The Industrial Internet of Things (IIoT) enables the creation of globally interconnected smart factories, where constituent elements seamlessly exchange information. Industry 5.0 has further complemented t...

Descripción completa

Detalles Bibliográficos
Autores principales: Morato, Alberto, Vitturi, Stefano, Tramarin, Federico, Zunino, Claudio, Cheminod, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535492/
https://www.ncbi.nlm.nih.gov/pubmed/37765883
http://dx.doi.org/10.3390/s23187825
_version_ 1785112642411560960
author Morato, Alberto
Vitturi, Stefano
Tramarin, Federico
Zunino, Claudio
Cheminod, Manuel
author_facet Morato, Alberto
Vitturi, Stefano
Tramarin, Federico
Zunino, Claudio
Cheminod, Manuel
author_sort Morato, Alberto
collection PubMed
description Industry 4.0 has significantly improved the industrial manufacturing scenario in recent years. The Industrial Internet of Things (IIoT) enables the creation of globally interconnected smart factories, where constituent elements seamlessly exchange information. Industry 5.0 has further complemented these achievements, as it focuses on a human-centric approach where humans become part of this network of things, leading to a robust human–machine interaction. In this distributed, dynamic, and highly interconnected environment, functional safety is essential for adequately protecting people and machinery. The increasing availability of wireless networks makes it possible to implement distributed and flexible functional safety systems. However, such networks are known for introducing unwanted delays that can lead to safety performance degradation due to their inherent uncertainty. In this context, the Time-Sensitive Networking (TSN) standards present an attractive prospect for enhancing and ensuring acceptable behaviors. The research presented in this paper deals with the introduction of TSN to implement functional safety protocols for wireless networks. Among the available solutions, we selected Wi-Fi since it is a widespread network, often considered and deployed for industrial applications. The introduction of a reference functional safety protocol is detailed, along with an analysis of how TSN can enhance its behavior by evaluating relevant performance indexes. The evaluation pertains to a standard case study of an industrial warehouse, tested through practical simulations. The results demonstrate that TSN provides notable advantages, but it requires meticulous coordination with the Wi-Fi MAC layer protocol to guarantee improved performance.
format Online
Article
Text
id pubmed-10535492
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105354922023-09-29 Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi Morato, Alberto Vitturi, Stefano Tramarin, Federico Zunino, Claudio Cheminod, Manuel Sensors (Basel) Article Industry 4.0 has significantly improved the industrial manufacturing scenario in recent years. The Industrial Internet of Things (IIoT) enables the creation of globally interconnected smart factories, where constituent elements seamlessly exchange information. Industry 5.0 has further complemented these achievements, as it focuses on a human-centric approach where humans become part of this network of things, leading to a robust human–machine interaction. In this distributed, dynamic, and highly interconnected environment, functional safety is essential for adequately protecting people and machinery. The increasing availability of wireless networks makes it possible to implement distributed and flexible functional safety systems. However, such networks are known for introducing unwanted delays that can lead to safety performance degradation due to their inherent uncertainty. In this context, the Time-Sensitive Networking (TSN) standards present an attractive prospect for enhancing and ensuring acceptable behaviors. The research presented in this paper deals with the introduction of TSN to implement functional safety protocols for wireless networks. Among the available solutions, we selected Wi-Fi since it is a widespread network, often considered and deployed for industrial applications. The introduction of a reference functional safety protocol is detailed, along with an analysis of how TSN can enhance its behavior by evaluating relevant performance indexes. The evaluation pertains to a standard case study of an industrial warehouse, tested through practical simulations. The results demonstrate that TSN provides notable advantages, but it requires meticulous coordination with the Wi-Fi MAC layer protocol to guarantee improved performance. MDPI 2023-09-12 /pmc/articles/PMC10535492/ /pubmed/37765883 http://dx.doi.org/10.3390/s23187825 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Morato, Alberto
Vitturi, Stefano
Tramarin, Federico
Zunino, Claudio
Cheminod, Manuel
Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi
title Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi
title_full Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi
title_fullStr Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi
title_full_unstemmed Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi
title_short Time-Sensitive Networking to Improve the Performance of Distributed Functional Safety Systems Implemented over Wi-Fi
title_sort time-sensitive networking to improve the performance of distributed functional safety systems implemented over wi-fi
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535492/
https://www.ncbi.nlm.nih.gov/pubmed/37765883
http://dx.doi.org/10.3390/s23187825
work_keys_str_mv AT moratoalberto timesensitivenetworkingtoimprovetheperformanceofdistributedfunctionalsafetysystemsimplementedoverwifi
AT vitturistefano timesensitivenetworkingtoimprovetheperformanceofdistributedfunctionalsafetysystemsimplementedoverwifi
AT tramarinfederico timesensitivenetworkingtoimprovetheperformanceofdistributedfunctionalsafetysystemsimplementedoverwifi
AT zuninoclaudio timesensitivenetworkingtoimprovetheperformanceofdistributedfunctionalsafetysystemsimplementedoverwifi
AT cheminodmanuel timesensitivenetworkingtoimprovetheperformanceofdistributedfunctionalsafetysystemsimplementedoverwifi