Cargando…

Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound

Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwe...

Descripción completa

Detalles Bibliográficos
Autores principales: Loughrin, John H., Parekh, Rohan R., Agga, Getahun E., Silva, Philip J., Sistani, Karamat R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535533/
https://www.ncbi.nlm.nih.gov/pubmed/37764193
http://dx.doi.org/10.3390/microorganisms11092349
_version_ 1785112652313264128
author Loughrin, John H.
Parekh, Rohan R.
Agga, Getahun E.
Silva, Philip J.
Sistani, Karamat R.
author_facet Loughrin, John H.
Parekh, Rohan R.
Agga, Getahun E.
Silva, Philip J.
Sistani, Karamat R.
author_sort Loughrin, John H.
collection PubMed
description Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwent four treatments: control, microaeration with 6 mL air L(−1) digestate per day, treatment with a 1000 Hz sine wave, or treatment with the sound wave and microaeration. Both microaeration and sound enhanced biogas production relative to the control, while their combination was not as effective as microaeration alone. At week six, over 80% of the microbiome of the four digesters was composed of the three phyla Actinobacteria, Proteobacteria, and Firmicutes, with less than 10% Euryarchaeota and Bacteroidetes. At week 23, the digester microbiomes were more diverse with the phyla Spirochaetes, Synergistetes, and Verrucomicrobia increasing in proportion and the abundance of Actinobacteria decreasing. At week 42, Firmicutes, Bacteroidetes, Euryarchaeota, and Actinobacteria were the most dominant phyla, comprising 27.8%, 21.4%, 17.6%, and 12.3% of the microbiome. Other than the relative proportions of Firmicutes being increased and proportions of Bacteroidetes being decreased by the treatments, no systematic shifts in the microbiomes were observed due to treatment. Rather, microbial diversity was enhanced relative to the control. Given that both air and sound treatment increased biogas production, it is likely that they improved poultry litter breakdown to promote microbial growth.
format Online
Article
Text
id pubmed-10535533
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105355332023-09-29 Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound Loughrin, John H. Parekh, Rohan R. Agga, Getahun E. Silva, Philip J. Sistani, Karamat R. Microorganisms Article Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwent four treatments: control, microaeration with 6 mL air L(−1) digestate per day, treatment with a 1000 Hz sine wave, or treatment with the sound wave and microaeration. Both microaeration and sound enhanced biogas production relative to the control, while their combination was not as effective as microaeration alone. At week six, over 80% of the microbiome of the four digesters was composed of the three phyla Actinobacteria, Proteobacteria, and Firmicutes, with less than 10% Euryarchaeota and Bacteroidetes. At week 23, the digester microbiomes were more diverse with the phyla Spirochaetes, Synergistetes, and Verrucomicrobia increasing in proportion and the abundance of Actinobacteria decreasing. At week 42, Firmicutes, Bacteroidetes, Euryarchaeota, and Actinobacteria were the most dominant phyla, comprising 27.8%, 21.4%, 17.6%, and 12.3% of the microbiome. Other than the relative proportions of Firmicutes being increased and proportions of Bacteroidetes being decreased by the treatments, no systematic shifts in the microbiomes were observed due to treatment. Rather, microbial diversity was enhanced relative to the control. Given that both air and sound treatment increased biogas production, it is likely that they improved poultry litter breakdown to promote microbial growth. MDPI 2023-09-20 /pmc/articles/PMC10535533/ /pubmed/37764193 http://dx.doi.org/10.3390/microorganisms11092349 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Loughrin, John H.
Parekh, Rohan R.
Agga, Getahun E.
Silva, Philip J.
Sistani, Karamat R.
Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound
title Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound
title_full Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound
title_fullStr Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound
title_full_unstemmed Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound
title_short Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound
title_sort microbiome diversity of anaerobic digesters is enhanced by microaeration and low frequency sound
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535533/
https://www.ncbi.nlm.nih.gov/pubmed/37764193
http://dx.doi.org/10.3390/microorganisms11092349
work_keys_str_mv AT loughrinjohnh microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound
AT parekhrohanr microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound
AT aggagetahune microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound
AT silvaphilipj microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound
AT sistanikaramatr microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound