Cargando…
A Survey of Deep Learning-Based Low-Light Image Enhancement
Images captured under poor lighting conditions often suffer from low brightness, low contrast, color distortion, and noise. The function of low-light image enhancement is to improve the visual effect of such images for subsequent processing. Recently, deep learning has been used more and more widely...
Autores principales: | Tian, Zhen, Qu, Peixin, Li, Jielin, Sun, Yukun, Li, Guohou, Liang, Zheng, Zhang, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535564/ https://www.ncbi.nlm.nih.gov/pubmed/37765817 http://dx.doi.org/10.3390/s23187763 |
Ejemplares similares
-
Low-Light Image Enhancement Using Hybrid Deep-Learning and Mixed-Norm Loss Functions
por: Oh, JongGeun, et al.
Publicado: (2022) -
Low-Light Image Enhancement Network Based on Recursive Network
por: Liu, Fangjin, et al.
Publicado: (2022) -
Cyclic Generative Attention-Adversarial Network for Low-Light Image Enhancement
por: Zhen, Tong, et al.
Publicado: (2023) -
Low-Light Image Enhancement via Retinex-Style Decomposition of Denoised Deep Image Prior
por: Gao, Xianjie, et al.
Publicado: (2022) -
Deep learning enables structured illumination microscopy with low light levels and enhanced speed
por: Jin, Luhong, et al.
Publicado: (2020)