Cargando…
Effects of Climatic Change on Phylogeography and Ecological Niche of the Endemic Herb Elymus breviaristatus on the Qinghai-Tibet Plateau
Past climatic and topographic variations have created strong biogeographic barriers for alpine species and are key drivers of the distribution of genetic variation and population dynamics of species on the Qinghai-Tibet Plateau (QTP). Therefore, to better conserve and use germplasm resources, it is...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535585/ https://www.ncbi.nlm.nih.gov/pubmed/37765492 http://dx.doi.org/10.3390/plants12183326 |
Sumario: | Past climatic and topographic variations have created strong biogeographic barriers for alpine species and are key drivers of the distribution of genetic variation and population dynamics of species on the Qinghai-Tibet Plateau (QTP). Therefore, to better conserve and use germplasm resources, it is crucial to understand the distribution and differentiation of genetic variation within species. Elymus breviaristatus, an ecologically important rare grass species with strong resistance, is restricted to a limited area of the QTP. In this study, we investigated the phylogeography of E. breviaristatus using five chloroplast genes and spacer regions in natural populations distributed along the eastern QTP. We identified a total of 25 haplotypes among 216 individuals from 18 E. breviaristatus populations, which were further classified into four haplogroups based on geographical distribution and haplotype network analysis. Notably, we did not observe any signs of population expansion. High genetic diversity was exhibited at both species and population levels, with precipitation being the main limiting factor for population genetic diversity levels. Higher genetic diversity was exhibited by populations located near the Mekong–Salween Divide genetic barrier, suggesting that they may have served as a glacial refuge. The significant pattern of genetic differentiation by environmental isolation highlights the influence of heterogeneous environments on the genetic structure of E. breviaristatus populations. Additionally, the results of ecological niche models indicated that the geographic distribution of E. breviaristatus populations has decreased rapidly since the Last Glacial Maximum but is not threatened by future global warming. |
---|