Cargando…
MAE-Based Self-Supervised Pretraining Algorithm for Heart Rate Estimation of Radar Signals
Noncontact heart rate monitoring techniques based on millimeter-wave radar have advantages in unique medical scenarios. However, the accuracy of the existing noncontact heart rate estimation methods is still limited by interference, such as DC offsets, respiratory harmonics, and environmental noise....
Autores principales: | Xiang, Yashan, Guo, Jian, Chen, Ming, Wang, Zheyu, Han, Chong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535668/ https://www.ncbi.nlm.nih.gov/pubmed/37765926 http://dx.doi.org/10.3390/s23187869 |
Ejemplares similares
-
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022) -
Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging
por: Shi, Chenwei, et al.
Publicado: (2023) -
Self-Supervised Learning-Based General Laboratory Progress Pretrained Model for Cardiovascular Event Detection
Publicado: (2023) -
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022) -
Visual-Text Reference Pretraining Model for Image Captioning
por: Li, Pengfei, et al.
Publicado: (2022)