Cargando…
Colorless Polyimides Derived from 5,5′-bis(2,3-norbornanedicarboxylic anhydride): Strategies to Reduce the Linear Coefficients of Thermal Expansion and Improve the Film Toughness
In this paper, novel colorless polyimides (PIs) derived from 5,5′-bis(2,3-norbornanedicarboxylic anhydride) (BNBDA) were presented. The results of single-crystal X-ray structural analysis using a BNBDA-based model compound suggested that it had a unique steric structure with high structural linearit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535765/ https://www.ncbi.nlm.nih.gov/pubmed/37765692 http://dx.doi.org/10.3390/polym15183838 |
Sumario: | In this paper, novel colorless polyimides (PIs) derived from 5,5′-bis(2,3-norbornanedicarboxylic anhydride) (BNBDA) were presented. The results of single-crystal X-ray structural analysis using a BNBDA-based model compound suggested that it had a unique steric structure with high structural linearity. Therefore, BNBDA is expected to afford new colorless PI films with an extremely high glass transition temperature (T(g)) and a low linear coefficient of thermal expansion (CTE) when combined with aromatic diamines with rigid and linear structures (typically, 2,2′-bis(trifluoromethyl)benzidine (TFMB)). However, the polyaddition of BNBDA and TFMB did not form a PI precursor with a sufficiently high molecular weight; consequently, the formation of a flexible, free-standing PI film via the two-step process was inhibited because of its brittleness. One-pot polycondensation was also unsuccessful in this system because of precipitation during the reaction, probably owing to the poor solubility of the initially yielded BNBDA/TFMB imide oligomers. The combinations of (1) the structural modification of the BNBDA/TFMB system, (2) the application of a modified one-pot process, in which the conditions of the temperature-rising profile, solvents, azeotropic agent, catalysts, and reactor were refined, and (3) the optimization of the film preparation conditions overcame the trade-off between low CTE and high film toughness and afforded unprecedented PI films with well-balanced properties, simultaneously achieving excellent optical transparency, extremely high T(g), sufficiently high thermal stability, low CTE, high toughness, relatively low water uptake, and excellent solution processability. |
---|