Cargando…
Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes
Inhalation is a major route by which human exposure to substances can occur. Resources have therefore been dedicated to optimize human-relevant in vitro approaches that can accurately and efficiently predict the toxicity of inhaled chemicals for robust risk assessment and management. In this study—t...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535780/ https://www.ncbi.nlm.nih.gov/pubmed/37498623 http://dx.doi.org/10.1093/toxsci/kfad074 |
_version_ | 1785112711918518272 |
---|---|
author | Sharma, Monita Stucki, Andreas O Verstraelen, Sandra Stedeford, Todd J Jacobs, An Maes, Frederick Poelmans, David Van Laer, Jo Remy, Sylvie Frijns, Evelien Allen, David G Clippinger, Amy J |
author_facet | Sharma, Monita Stucki, Andreas O Verstraelen, Sandra Stedeford, Todd J Jacobs, An Maes, Frederick Poelmans, David Van Laer, Jo Remy, Sylvie Frijns, Evelien Allen, David G Clippinger, Amy J |
author_sort | Sharma, Monita |
collection | PubMed |
description | Inhalation is a major route by which human exposure to substances can occur. Resources have therefore been dedicated to optimize human-relevant in vitro approaches that can accurately and efficiently predict the toxicity of inhaled chemicals for robust risk assessment and management. In this study—the IN vitro Systems to PredIct REspiratory toxicity Initiative—2 cell-based systems were used to predict the ability of chemicals to cause portal-of-entry effects on the human respiratory tract. A human bronchial epithelial cell line (BEAS-2B) and a reconstructed human tissue model (MucilAir, Epithelix) were exposed to triethoxysilane (TES) and trimethoxysilane (TMS) as vapor (mixed with N(2) gas) at the air-liquid interface. Cell viability, cytotoxicity, and secretion of inflammatory markers were assessed in both cell systems and, for MucilAir tissues, morphology, barrier integrity, cilia beating frequency, and recovery after 7 days were also examined. The results show that both cell systems provide valuable information; the BEAS-2B cells were more sensitive in terms of cell viability and inflammatory markers, whereas MucilAir tissues allowed for the assessment of additional cellular effects and time points. As a proof of concept, the data were also used to calculate human equivalent concentrations. As expected, based on chemical properties and existing data, the silanes demonstrated toxicity in both systems with TMS being generally more toxic than TES. Overall, the results demonstrate that these in vitro test systems can provide valuable information relevant to predicting the likelihood of toxicity following inhalation exposure to chemicals in humans. |
format | Online Article Text |
id | pubmed-10535780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105357802023-09-29 Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes Sharma, Monita Stucki, Andreas O Verstraelen, Sandra Stedeford, Todd J Jacobs, An Maes, Frederick Poelmans, David Van Laer, Jo Remy, Sylvie Frijns, Evelien Allen, David G Clippinger, Amy J Toxicol Sci Emerging Technologies, Methods, and Models Inhalation is a major route by which human exposure to substances can occur. Resources have therefore been dedicated to optimize human-relevant in vitro approaches that can accurately and efficiently predict the toxicity of inhaled chemicals for robust risk assessment and management. In this study—the IN vitro Systems to PredIct REspiratory toxicity Initiative—2 cell-based systems were used to predict the ability of chemicals to cause portal-of-entry effects on the human respiratory tract. A human bronchial epithelial cell line (BEAS-2B) and a reconstructed human tissue model (MucilAir, Epithelix) were exposed to triethoxysilane (TES) and trimethoxysilane (TMS) as vapor (mixed with N(2) gas) at the air-liquid interface. Cell viability, cytotoxicity, and secretion of inflammatory markers were assessed in both cell systems and, for MucilAir tissues, morphology, barrier integrity, cilia beating frequency, and recovery after 7 days were also examined. The results show that both cell systems provide valuable information; the BEAS-2B cells were more sensitive in terms of cell viability and inflammatory markers, whereas MucilAir tissues allowed for the assessment of additional cellular effects and time points. As a proof of concept, the data were also used to calculate human equivalent concentrations. As expected, based on chemical properties and existing data, the silanes demonstrated toxicity in both systems with TMS being generally more toxic than TES. Overall, the results demonstrate that these in vitro test systems can provide valuable information relevant to predicting the likelihood of toxicity following inhalation exposure to chemicals in humans. Oxford University Press 2023-07-27 /pmc/articles/PMC10535780/ /pubmed/37498623 http://dx.doi.org/10.1093/toxsci/kfad074 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Emerging Technologies, Methods, and Models Sharma, Monita Stucki, Andreas O Verstraelen, Sandra Stedeford, Todd J Jacobs, An Maes, Frederick Poelmans, David Van Laer, Jo Remy, Sylvie Frijns, Evelien Allen, David G Clippinger, Amy J Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes |
title | Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes |
title_full | Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes |
title_fullStr | Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes |
title_full_unstemmed | Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes |
title_short | Human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes |
title_sort | human cell-based in vitro systems to assess respiratory toxicity: a case study using silanes |
topic | Emerging Technologies, Methods, and Models |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535780/ https://www.ncbi.nlm.nih.gov/pubmed/37498623 http://dx.doi.org/10.1093/toxsci/kfad074 |
work_keys_str_mv | AT sharmamonita humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT stuckiandreaso humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT verstraelensandra humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT stedefordtoddj humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT jacobsan humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT maesfrederick humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT poelmansdavid humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT vanlaerjo humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT remysylvie humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT frijnsevelien humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT allendavidg humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes AT clippingeramyj humancellbasedinvitrosystemstoassessrespiratorytoxicityacasestudyusingsilanes |