Cargando…
Long-Short-Term-Memory-Based Deep Stacked Sequence-to-Sequence Autoencoder for Health Prediction of Industrial Workers in Closed Environments Based on Wearable Devices
To reduce the risks and challenges faced by frontline workers in confined workspaces, accurate real-time health monitoring of their vital signs is essential for improving safety and productivity and preventing accidents. Machine-learning-based data-driven methods have shown promise in extracting val...
Autores principales: | Xu, Weidong, He, Jingke, Li, Weihua, He, Yi, Wan, Haiyang, Qin, Wu, Chen, Zhuyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535786/ https://www.ncbi.nlm.nih.gov/pubmed/37765931 http://dx.doi.org/10.3390/s23187874 |
Ejemplares similares
-
Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units
por: Karapalidou, Elisavet, et al.
Publicado: (2023) -
Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders
por: Ni, Qin, et al.
Publicado: (2020) -
Stacked-autoencoder-based model for COVID-19 diagnosis on CT images
por: Li, Daqiu, et al.
Publicado: (2020) -
Stacked Autoencoders for the P300 Component Detection
por: Vařeka, Lukáš, et al.
Publicado: (2017) -
An Improved Stacked Autoencoder for Metabolomic Data Classification
por: Fan, Xiaojing, et al.
Publicado: (2021)