Cargando…
A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug–Target Interaction Prediction
The prediction of drug–target interaction (DTI) is crucial to drug discovery. Although the interactions between the drug and target can be accurately verified by traditional biochemical experiments, the determination of DTI through biochemical experiments is a time-consuming, laborious, and expensiv...
Autores principales: | Liu, Liwei, Zhang, Qi, Wei, Yuxiao, Zhao, Qi, Liao, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535805/ https://www.ncbi.nlm.nih.gov/pubmed/37764321 http://dx.doi.org/10.3390/molecules28186546 |
Ejemplares similares
-
iGRLDTI: an improved graph representation learning method for predicting drug–target interactions over heterogeneous biological information network
por: Zhao, Bo-Wei, et al.
Publicado: (2023) -
DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation
por: Zhao, Yihan, et al.
Publicado: (2020) -
A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network
por: Peng, Jiajie, et al.
Publicado: (2020) -
Multi-view heterogeneous molecular network representation learning for protein–protein interaction prediction
por: Su, Xiao-Rui, et al.
Publicado: (2022) -
Synthesize heterogeneous biological knowledge via representation learning for Alzheimer’s disease drug repurposing
por: Hsieh, Kang-Lin, et al.
Publicado: (2022)