Cargando…

Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure

In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunab...

Descripción completa

Detalles Bibliográficos
Autores principales: Coello, Victor, Abdulkareem, Mas-ud A., Garcia-Ortiz, Cesar E., Sosa-Sánchez, Citlalli T., Téllez-Limón, Ricardo, Peña-Gomar, Marycarmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535901/
https://www.ncbi.nlm.nih.gov/pubmed/37763875
http://dx.doi.org/10.3390/mi14091713
_version_ 1785112739415326720
author Coello, Victor
Abdulkareem, Mas-ud A.
Garcia-Ortiz, Cesar E.
Sosa-Sánchez, Citlalli T.
Téllez-Limón, Ricardo
Peña-Gomar, Marycarmen
author_facet Coello, Victor
Abdulkareem, Mas-ud A.
Garcia-Ortiz, Cesar E.
Sosa-Sánchez, Citlalli T.
Téllez-Limón, Ricardo
Peña-Gomar, Marycarmen
author_sort Coello, Victor
collection PubMed
description In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through finite difference time domain (FDTD) simulations, we analyze the metasurface’s reflectance spectra for various lattice periods and identify two distinct dips with near-zero reflectance, indicative of resonant modes. Notably, the broader dip at 1150 nm exhibits consistent behavior across all lattice periodicities, attributed to a Fano-type hybridization mechanism originating from the overlap between localized surface plasmons (LSPs) of metallic nanoblocks and surface plasmon polaritons (SPPs) of the underlying metal layer. Additionally, we investigate the influence of dielectric gap thickness on the gap surface plasmon resonance and observe a blue shift for smaller gaps and a spectral red shift for gaps larger than 100 nm. The dispersion analysis of resonance wavelengths reveals an anticrossing region, indicating the hybridization of localized and propagating modes at wavelengths around 1080 nm with similar periodicities. The simplicity and tunability of our metasurface design hold promise for compact optical platforms based on reflection mode operation. Potential applications include multi-channel biosensors, second-harmonic generation, and multi-wavelength surface-enhanced spectroscopy.
format Online
Article
Text
id pubmed-10535901
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105359012023-09-29 Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure Coello, Victor Abdulkareem, Mas-ud A. Garcia-Ortiz, Cesar E. Sosa-Sánchez, Citlalli T. Téllez-Limón, Ricardo Peña-Gomar, Marycarmen Micromachines (Basel) Article In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through finite difference time domain (FDTD) simulations, we analyze the metasurface’s reflectance spectra for various lattice periods and identify two distinct dips with near-zero reflectance, indicative of resonant modes. Notably, the broader dip at 1150 nm exhibits consistent behavior across all lattice periodicities, attributed to a Fano-type hybridization mechanism originating from the overlap between localized surface plasmons (LSPs) of metallic nanoblocks and surface plasmon polaritons (SPPs) of the underlying metal layer. Additionally, we investigate the influence of dielectric gap thickness on the gap surface plasmon resonance and observe a blue shift for smaller gaps and a spectral red shift for gaps larger than 100 nm. The dispersion analysis of resonance wavelengths reveals an anticrossing region, indicating the hybridization of localized and propagating modes at wavelengths around 1080 nm with similar periodicities. The simplicity and tunability of our metasurface design hold promise for compact optical platforms based on reflection mode operation. Potential applications include multi-channel biosensors, second-harmonic generation, and multi-wavelength surface-enhanced spectroscopy. MDPI 2023-08-31 /pmc/articles/PMC10535901/ /pubmed/37763875 http://dx.doi.org/10.3390/mi14091713 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Coello, Victor
Abdulkareem, Mas-ud A.
Garcia-Ortiz, Cesar E.
Sosa-Sánchez, Citlalli T.
Téllez-Limón, Ricardo
Peña-Gomar, Marycarmen
Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
title Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
title_full Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
title_fullStr Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
title_full_unstemmed Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
title_short Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
title_sort plasmonic coupled modes in a metal–dielectric periodic nanostructure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535901/
https://www.ncbi.nlm.nih.gov/pubmed/37763875
http://dx.doi.org/10.3390/mi14091713
work_keys_str_mv AT coellovictor plasmoniccoupledmodesinametaldielectricperiodicnanostructure
AT abdulkareemmasuda plasmoniccoupledmodesinametaldielectricperiodicnanostructure
AT garciaortizcesare plasmoniccoupledmodesinametaldielectricperiodicnanostructure
AT sosasanchezcitlallit plasmoniccoupledmodesinametaldielectricperiodicnanostructure
AT tellezlimonricardo plasmoniccoupledmodesinametaldielectricperiodicnanostructure
AT penagomarmarycarmen plasmoniccoupledmodesinametaldielectricperiodicnanostructure