Cargando…
Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunab...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535901/ https://www.ncbi.nlm.nih.gov/pubmed/37763875 http://dx.doi.org/10.3390/mi14091713 |
_version_ | 1785112739415326720 |
---|---|
author | Coello, Victor Abdulkareem, Mas-ud A. Garcia-Ortiz, Cesar E. Sosa-Sánchez, Citlalli T. Téllez-Limón, Ricardo Peña-Gomar, Marycarmen |
author_facet | Coello, Victor Abdulkareem, Mas-ud A. Garcia-Ortiz, Cesar E. Sosa-Sánchez, Citlalli T. Téllez-Limón, Ricardo Peña-Gomar, Marycarmen |
author_sort | Coello, Victor |
collection | PubMed |
description | In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through finite difference time domain (FDTD) simulations, we analyze the metasurface’s reflectance spectra for various lattice periods and identify two distinct dips with near-zero reflectance, indicative of resonant modes. Notably, the broader dip at 1150 nm exhibits consistent behavior across all lattice periodicities, attributed to a Fano-type hybridization mechanism originating from the overlap between localized surface plasmons (LSPs) of metallic nanoblocks and surface plasmon polaritons (SPPs) of the underlying metal layer. Additionally, we investigate the influence of dielectric gap thickness on the gap surface plasmon resonance and observe a blue shift for smaller gaps and a spectral red shift for gaps larger than 100 nm. The dispersion analysis of resonance wavelengths reveals an anticrossing region, indicating the hybridization of localized and propagating modes at wavelengths around 1080 nm with similar periodicities. The simplicity and tunability of our metasurface design hold promise for compact optical platforms based on reflection mode operation. Potential applications include multi-channel biosensors, second-harmonic generation, and multi-wavelength surface-enhanced spectroscopy. |
format | Online Article Text |
id | pubmed-10535901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105359012023-09-29 Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure Coello, Victor Abdulkareem, Mas-ud A. Garcia-Ortiz, Cesar E. Sosa-Sánchez, Citlalli T. Téllez-Limón, Ricardo Peña-Gomar, Marycarmen Micromachines (Basel) Article In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through finite difference time domain (FDTD) simulations, we analyze the metasurface’s reflectance spectra for various lattice periods and identify two distinct dips with near-zero reflectance, indicative of resonant modes. Notably, the broader dip at 1150 nm exhibits consistent behavior across all lattice periodicities, attributed to a Fano-type hybridization mechanism originating from the overlap between localized surface plasmons (LSPs) of metallic nanoblocks and surface plasmon polaritons (SPPs) of the underlying metal layer. Additionally, we investigate the influence of dielectric gap thickness on the gap surface plasmon resonance and observe a blue shift for smaller gaps and a spectral red shift for gaps larger than 100 nm. The dispersion analysis of resonance wavelengths reveals an anticrossing region, indicating the hybridization of localized and propagating modes at wavelengths around 1080 nm with similar periodicities. The simplicity and tunability of our metasurface design hold promise for compact optical platforms based on reflection mode operation. Potential applications include multi-channel biosensors, second-harmonic generation, and multi-wavelength surface-enhanced spectroscopy. MDPI 2023-08-31 /pmc/articles/PMC10535901/ /pubmed/37763875 http://dx.doi.org/10.3390/mi14091713 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Coello, Victor Abdulkareem, Mas-ud A. Garcia-Ortiz, Cesar E. Sosa-Sánchez, Citlalli T. Téllez-Limón, Ricardo Peña-Gomar, Marycarmen Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure |
title | Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure |
title_full | Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure |
title_fullStr | Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure |
title_full_unstemmed | Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure |
title_short | Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure |
title_sort | plasmonic coupled modes in a metal–dielectric periodic nanostructure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535901/ https://www.ncbi.nlm.nih.gov/pubmed/37763875 http://dx.doi.org/10.3390/mi14091713 |
work_keys_str_mv | AT coellovictor plasmoniccoupledmodesinametaldielectricperiodicnanostructure AT abdulkareemmasuda plasmoniccoupledmodesinametaldielectricperiodicnanostructure AT garciaortizcesare plasmoniccoupledmodesinametaldielectricperiodicnanostructure AT sosasanchezcitlallit plasmoniccoupledmodesinametaldielectricperiodicnanostructure AT tellezlimonricardo plasmoniccoupledmodesinametaldielectricperiodicnanostructure AT penagomarmarycarmen plasmoniccoupledmodesinametaldielectricperiodicnanostructure |