Cargando…

A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips

An Auto-Trimming CMOS Bandgap References Circuit (ATBGR) with PSRR enhancement circuit for Artificial Intelligence of Things (AIoT) chips is presented in this paper. The ATBGR is designed with a first-order temperature compensation technique providing a stable reference voltage of 1.25 V in the rang...

Descripción completa

Detalles Bibliográficos
Autores principales: Poongan, Balamahesn, Rajendran, Jagadheswaran, Mariappan, Selvakumar, Rawat, Arvind Singh, Kumar, Narendra, Nathan, Arokia, Yarman, Binboga S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535921/
https://www.ncbi.nlm.nih.gov/pubmed/37763888
http://dx.doi.org/10.3390/mi14091724
_version_ 1785112744159084544
author Poongan, Balamahesn
Rajendran, Jagadheswaran
Mariappan, Selvakumar
Rawat, Arvind Singh
Kumar, Narendra
Nathan, Arokia
Yarman, Binboga S.
author_facet Poongan, Balamahesn
Rajendran, Jagadheswaran
Mariappan, Selvakumar
Rawat, Arvind Singh
Kumar, Narendra
Nathan, Arokia
Yarman, Binboga S.
author_sort Poongan, Balamahesn
collection PubMed
description An Auto-Trimming CMOS Bandgap References Circuit (ATBGR) with PSRR enhancement circuit for Artificial Intelligence of Things (AIoT) chips is presented in this paper. The ATBGR is designed with a first-order temperature compensation technique providing a stable reference voltage of 1.25 V in the ranges of input voltages from 1.65 V to 4.5 V. An auto-trimming circuit is integrated into a PTAT resistor of BGR to minimize the influences of the process variations. The four parallel resistor pairs with PMOS switches are connected in series with the PTAT resistor. The reference voltage, V(REF), is compared to an external constant value, 1.25 V, through an operational amplifier, and the output of the de-multiplexer is used to configure the PMOS switches. High power supply rejection is achieved through a PSRR enhancement circuit constituting a cascaded PMOS common gate pair. The ATBGR circuit is fabricated in 180 nm CMOS technology, consuming an area of 0.03277 mm(2). The auto-trimming method yields an average temperature coefficient of 9.99 ppm/°C with temperature ranges from −40 °C to 125 °C, and a power supply rejection ratio of −90 dB at 100 MHz is obtained. The line regulation of the proposed circuit is 0.434%/V with power consumption of 54.12 µW at room temperature.
format Online
Article
Text
id pubmed-10535921
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105359212023-09-29 A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips Poongan, Balamahesn Rajendran, Jagadheswaran Mariappan, Selvakumar Rawat, Arvind Singh Kumar, Narendra Nathan, Arokia Yarman, Binboga S. Micromachines (Basel) Article An Auto-Trimming CMOS Bandgap References Circuit (ATBGR) with PSRR enhancement circuit for Artificial Intelligence of Things (AIoT) chips is presented in this paper. The ATBGR is designed with a first-order temperature compensation technique providing a stable reference voltage of 1.25 V in the ranges of input voltages from 1.65 V to 4.5 V. An auto-trimming circuit is integrated into a PTAT resistor of BGR to minimize the influences of the process variations. The four parallel resistor pairs with PMOS switches are connected in series with the PTAT resistor. The reference voltage, V(REF), is compared to an external constant value, 1.25 V, through an operational amplifier, and the output of the de-multiplexer is used to configure the PMOS switches. High power supply rejection is achieved through a PSRR enhancement circuit constituting a cascaded PMOS common gate pair. The ATBGR circuit is fabricated in 180 nm CMOS technology, consuming an area of 0.03277 mm(2). The auto-trimming method yields an average temperature coefficient of 9.99 ppm/°C with temperature ranges from −40 °C to 125 °C, and a power supply rejection ratio of −90 dB at 100 MHz is obtained. The line regulation of the proposed circuit is 0.434%/V with power consumption of 54.12 µW at room temperature. MDPI 2023-09-01 /pmc/articles/PMC10535921/ /pubmed/37763888 http://dx.doi.org/10.3390/mi14091724 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Poongan, Balamahesn
Rajendran, Jagadheswaran
Mariappan, Selvakumar
Rawat, Arvind Singh
Kumar, Narendra
Nathan, Arokia
Yarman, Binboga S.
A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips
title A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips
title_full A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips
title_fullStr A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips
title_full_unstemmed A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips
title_short A 54 µW CMOS Auto-Trimming Bandgap References (ATBGR) Achieving 90 dB PSRR for Artificial Intelligence of Things (AIoT) Chips
title_sort 54 µw cmos auto-trimming bandgap references (atbgr) achieving 90 db psrr for artificial intelligence of things (aiot) chips
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535921/
https://www.ncbi.nlm.nih.gov/pubmed/37763888
http://dx.doi.org/10.3390/mi14091724
work_keys_str_mv AT poonganbalamahesn a54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT rajendranjagadheswaran a54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT mariappanselvakumar a54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT rawatarvindsingh a54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT kumarnarendra a54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT nathanarokia a54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT yarmanbinbogas a54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT poonganbalamahesn 54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT rajendranjagadheswaran 54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT mariappanselvakumar 54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT rawatarvindsingh 54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT kumarnarendra 54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT nathanarokia 54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips
AT yarmanbinbogas 54μwcmosautotrimmingbandgapreferencesatbgrachieving90dbpsrrforartificialintelligenceofthingsaiotchips