Cargando…
Decoding Algorithm of Motor Imagery Electroencephalogram Signal Based on CLRNet Network Model
EEG decoding based on motor imagery is an important part of brain–computer interface technology and is an important indicator that determines the overall performance of the brain–computer interface. Due to the complexity of motor imagery EEG feature analysis, traditional classification models rely h...
Autores principales: | Zhang, Chaozhu, Chu, Hongxing, Ma, Mingyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536050/ https://www.ncbi.nlm.nih.gov/pubmed/37765751 http://dx.doi.org/10.3390/s23187694 |
Ejemplares similares
-
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification
por: Shi, Bin, et al.
Publicado: (2022) -
Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer
por: Wang, Ximiao, et al.
Publicado: (2023) -
Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022)