Cargando…

Targeting DNA Damage Repair and Immune Checkpoint Proteins for Optimizing the Treatment of Endometrial Cancer

The dependence of cancer cells on the DNA damage response (DDR) pathway for the repair of endogenous- or exogenous-factor-induced DNA damage has been extensively studied in various cancer types, including endometrial cancer (EC). Targeting one or more DNA damage repair protein with small molecules h...

Descripción completa

Detalles Bibliográficos
Autores principales: Bian, Xing, Sun, Chuanbo, Cheng, Jin, Hong, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536053/
https://www.ncbi.nlm.nih.gov/pubmed/37765210
http://dx.doi.org/10.3390/pharmaceutics15092241
Descripción
Sumario:The dependence of cancer cells on the DNA damage response (DDR) pathway for the repair of endogenous- or exogenous-factor-induced DNA damage has been extensively studied in various cancer types, including endometrial cancer (EC). Targeting one or more DNA damage repair protein with small molecules has shown encouraging treatment efficacy in preclinical and clinical models. However, the genes coding for DDR factors are rarely mutated in EC, limiting the utility of DDR inhibitors in this disease. In the current review, we recapitulate the functional role of the DNA repair system in the development and progression of cancer. Importantly, we discuss strategies that target DDR proteins, including PARP, CHK1 and WEE1, as monotherapies or in combination with cytotoxic agents in the treatment of EC and highlight the compounds currently being evaluated for their efficacy in EC in clinic. Recent studies indicate that the application of DNA damage agents in cancer cells leads to the activation of innate and adaptive immune responses; targeting immune checkpoint proteins could overcome the immune suppressive environment in tumors. We further summarize recently revolutionized immunotherapies that have been completed or are now being evaluated for their efficacy in advanced EC and propose future directions for the development of DDR-based cancer therapeutics in the treatment of EC.