Cargando…
Learning adaptive reaching and pushing skills using contact information
In this paper, we propose a deep reinforcement learning-based framework that enables adaptive and continuous control of a robot to push unseen objects from random positions to the target position. Our approach takes into account contact information in the design of the reward function, resulting in...
Autores principales: | Wang, Shuaijun, Sun, Lining, Zha, Fusheng, Guo, Wei, Wang, Pengfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536165/ https://www.ncbi.nlm.nih.gov/pubmed/37781411 http://dx.doi.org/10.3389/fnbot.2023.1271607 |
Ejemplares similares
-
Peg-in-hole assembly skill imitation learning method based on ProMPs under task geometric representation
por: Zang, Yajing, et al.
Publicado: (2023) -
Learning to push and learning to move: the adaptive control of contact forces
por: Casadio, Maura, et al.
Publicado: (2015) -
A Bionic Spatial Cognition Model and Method for Robots Based on the Hippocampus Mechanism
por: Yuan, Jinsheng, et al.
Publicado: (2022) -
Learning Transferable Push Manipulation Skills in Novel Contexts
por: Howard, Rhys, et al.
Publicado: (2021) -
Creating Better Collision-Free Trajectory for Robot Motion Planning by Linearly Constrained Quadratic Programming
por: Liu, Yizhou, et al.
Publicado: (2021)