Cargando…
Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece
Introduction: Dihydropyrimidine dehydrogenase (DPD), encoded by DPYD gene, is the rate-limiting enzyme responsible for fluoropyrimidine (FP) catabolism. DPYD gene variants seriously affect DPD activity and are well validated predictors of FP-associated toxicity. DPYD variants rs3918290, rs55886062,...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536177/ https://www.ncbi.nlm.nih.gov/pubmed/37781702 http://dx.doi.org/10.3389/fphar.2023.1248898 |
_version_ | 1785112804048502784 |
---|---|
author | Ragia, Georgia Maslarinou, Anthi Atzemian, Natalia Biziota, Eirini Koukaki, Triantafyllia Ioannou, Charalampia Balgkouranidou, Ioanna Kolios, George Kakolyris, Stylianos Xenidis, Nikolaos Amarantidis, Kyriakos Manolopoulos, Vangelis G. |
author_facet | Ragia, Georgia Maslarinou, Anthi Atzemian, Natalia Biziota, Eirini Koukaki, Triantafyllia Ioannou, Charalampia Balgkouranidou, Ioanna Kolios, George Kakolyris, Stylianos Xenidis, Nikolaos Amarantidis, Kyriakos Manolopoulos, Vangelis G. |
author_sort | Ragia, Georgia |
collection | PubMed |
description | Introduction: Dihydropyrimidine dehydrogenase (DPD), encoded by DPYD gene, is the rate-limiting enzyme responsible for fluoropyrimidine (FP) catabolism. DPYD gene variants seriously affect DPD activity and are well validated predictors of FP-associated toxicity. DPYD variants rs3918290, rs55886062, rs67376798, and rs75017182 are currently included in FP genetic-based dosing guidelines and are recommended for genotyping by the European Medicines Agency (EMA) before treatment initiation. In Greece, however, no data exist on DPYD genotyping. The aim of the present study was to analyze prevalence of DPYD rs3918290, rs55886062, rs67376798, rs75017182, and, additionally, rs1801160 variants, and assess their association with FP-induced toxicity in Greek cancer patients. Methods: Study group consisted of 313 FP-treated cancer patients. DPYD genotyping was conducted on QuantStudio ™ 12K Flex Real-Time PCR System (ThermoFisher Scientific) using the TaqMan(®) assays C__30633851_20 (rs3918290), C__11985548_10 (rs55886062), C__27530948_10 (rs67376798), C_104846637_10 (rs75017182) and C__11372171_10 (rs1801160). Results: Any grade toxicity (1-4) was recorded in 208 patients (66.5%). Out of them, 25 patients (12%) experienced grade 3-4 toxicity. DPYD EMA recommended variants were detected in 9 patients (2.9%), all experiencing toxicity (p = 0.031, 100% specificity). This frequency was found increased in grade 3-4 toxicity cases (12%, p = 0.004, 97.9% specificity). DPYD deficiency increased the odds of grade 3-4 toxicity (OR: 6.493, p = 0.014) and of grade 1-4 gastrointestinal (OR: 13.990, p = 0.014), neurological (OR: 4.134, p = 0.040) and nutrition/metabolism (OR: 4.821, p = 0.035) toxicities. FP dose intensity was significantly reduced in DPYD deficient patients (β = −0.060, p <0.001). DPYD rs1801160 variant was not associated with FP-induced toxicity or dose intensity. Triple interaction of DPYD*TYMS*MTHFR was associated with grade 3-4 toxicity (OR: 3.725, p = 0.007). Conclusion: Our findings confirm the clinical validity of DPYD reduced function alleles as risk factors for development of FP-associated toxicity in the Greek population. Pre-treatment DPYD genotyping should be implemented in clinical practice and guide FP dosing. DPYD*gene interactions merit further investigation as to their potential to increase the prognostic value of DPYD genotyping and improve safety of FP-based chemotherapy. |
format | Online Article Text |
id | pubmed-10536177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105361772023-09-29 Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece Ragia, Georgia Maslarinou, Anthi Atzemian, Natalia Biziota, Eirini Koukaki, Triantafyllia Ioannou, Charalampia Balgkouranidou, Ioanna Kolios, George Kakolyris, Stylianos Xenidis, Nikolaos Amarantidis, Kyriakos Manolopoulos, Vangelis G. Front Pharmacol Pharmacology Introduction: Dihydropyrimidine dehydrogenase (DPD), encoded by DPYD gene, is the rate-limiting enzyme responsible for fluoropyrimidine (FP) catabolism. DPYD gene variants seriously affect DPD activity and are well validated predictors of FP-associated toxicity. DPYD variants rs3918290, rs55886062, rs67376798, and rs75017182 are currently included in FP genetic-based dosing guidelines and are recommended for genotyping by the European Medicines Agency (EMA) before treatment initiation. In Greece, however, no data exist on DPYD genotyping. The aim of the present study was to analyze prevalence of DPYD rs3918290, rs55886062, rs67376798, rs75017182, and, additionally, rs1801160 variants, and assess their association with FP-induced toxicity in Greek cancer patients. Methods: Study group consisted of 313 FP-treated cancer patients. DPYD genotyping was conducted on QuantStudio ™ 12K Flex Real-Time PCR System (ThermoFisher Scientific) using the TaqMan(®) assays C__30633851_20 (rs3918290), C__11985548_10 (rs55886062), C__27530948_10 (rs67376798), C_104846637_10 (rs75017182) and C__11372171_10 (rs1801160). Results: Any grade toxicity (1-4) was recorded in 208 patients (66.5%). Out of them, 25 patients (12%) experienced grade 3-4 toxicity. DPYD EMA recommended variants were detected in 9 patients (2.9%), all experiencing toxicity (p = 0.031, 100% specificity). This frequency was found increased in grade 3-4 toxicity cases (12%, p = 0.004, 97.9% specificity). DPYD deficiency increased the odds of grade 3-4 toxicity (OR: 6.493, p = 0.014) and of grade 1-4 gastrointestinal (OR: 13.990, p = 0.014), neurological (OR: 4.134, p = 0.040) and nutrition/metabolism (OR: 4.821, p = 0.035) toxicities. FP dose intensity was significantly reduced in DPYD deficient patients (β = −0.060, p <0.001). DPYD rs1801160 variant was not associated with FP-induced toxicity or dose intensity. Triple interaction of DPYD*TYMS*MTHFR was associated with grade 3-4 toxicity (OR: 3.725, p = 0.007). Conclusion: Our findings confirm the clinical validity of DPYD reduced function alleles as risk factors for development of FP-associated toxicity in the Greek population. Pre-treatment DPYD genotyping should be implemented in clinical practice and guide FP dosing. DPYD*gene interactions merit further investigation as to their potential to increase the prognostic value of DPYD genotyping and improve safety of FP-based chemotherapy. Frontiers Media S.A. 2023-09-14 /pmc/articles/PMC10536177/ /pubmed/37781702 http://dx.doi.org/10.3389/fphar.2023.1248898 Text en Copyright © 2023 Ragia, Maslarinou, Atzemian, Biziota, Koukaki, Ioannou, Balgkouranidou, Kolios, Kakolyris, Xenidis, Amarantidis and Manolopoulos. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Ragia, Georgia Maslarinou, Anthi Atzemian, Natalia Biziota, Eirini Koukaki, Triantafyllia Ioannou, Charalampia Balgkouranidou, Ioanna Kolios, George Kakolyris, Stylianos Xenidis, Nikolaos Amarantidis, Kyriakos Manolopoulos, Vangelis G. Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece |
title | Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece |
title_full | Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece |
title_fullStr | Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece |
title_full_unstemmed | Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece |
title_short | Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece |
title_sort | implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: dpyd genotyping to guide chemotherapy dosing in greece |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536177/ https://www.ncbi.nlm.nih.gov/pubmed/37781702 http://dx.doi.org/10.3389/fphar.2023.1248898 |
work_keys_str_mv | AT ragiageorgia implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT maslarinouanthi implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT atzemiannatalia implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT biziotaeirini implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT koukakitriantafyllia implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT ioannoucharalampia implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT balgkouranidouioanna implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT koliosgeorge implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT kakolyrisstylianos implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT xenidisnikolaos implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT amarantidiskyriakos implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece AT manolopoulosvangelisg implementingpharmacogenetictestinginfluoropyrimidinetreatedcancerpatientsdpydgenotypingtoguidechemotherapydosingingreece |