Cargando…

11-Nor-9-Carboxy Tetrahydrocannabinol Distribution in Fluid from the Chest Cavity in Cannabis-Related Post-Mortem Cases

In this study, the presence of 11-nor-Δ(9)-carboxy tetrahydrocannabinol (THC-COOH) in postmortem fluid obtained from the chest cavity (FCC) of postmortem cases collected from drug-related fatalities or criminal-related deaths in Jeddah, Saudi Arabia, was investigated to evaluate its suitability for...

Descripción completa

Detalles Bibliográficos
Autores principales: Zughaibi, Torki A., Alharbi, Hassan, Al-Saadi, Adel, Alzahrani, Abdulnasser E., Al-Asmari, Ahmed I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536215/
https://www.ncbi.nlm.nih.gov/pubmed/37755750
http://dx.doi.org/10.3390/toxics11090740
Descripción
Sumario:In this study, the presence of 11-nor-Δ(9)-carboxy tetrahydrocannabinol (THC-COOH) in postmortem fluid obtained from the chest cavity (FCC) of postmortem cases collected from drug-related fatalities or criminal-related deaths in Jeddah, Saudi Arabia, was investigated to evaluate its suitability for use as a complementary specimen to blood and biological specimens in cases where no bodily fluids are available or suitable for analysis. The relationships between THC-COOH concentrations in the FCC samples and age, body mass index (BMI), polydrug intoxication, manner, and cause of death were investigated. Methods: Fifteen postmortem cases of FCC were analyzed using fully validated liquid chromatography-positive-electrospray ionization tandem mass spectrometry (LC-MS/MS). Results: FCC samples were collected from 15 postmortem cases; only THC-COOH tested positive, with a median concentration of 480 ng/mL (range = 80–3010 ng/mL). THC-COOH in FCC were higher than THC-COOH in all tested specimens with exception to bile, the median ratio FCC/blood with sodium fluoride, FCC/urine, FCC/gastric content, FCC/bile, FCC/liver, FCC/kidney, FCC/brain, FCC/stomach wall, FCC/lung, and FCC/intestine tissue were 48, 2, 0.2, 6, 4, 6, 102, 11, 5 and 10-fold, respectively. Conclusion: This is the first postmortem report of THC-COOH in the FCC using cannabinoid-related analysis. The FCC samples were liquid, easy to manipulate, and extracted using the same procedure as the blood samples. The source of THC-COOH detected in FCC could be derived from the surrounding organs due to postmortem redistribution or contamination due to postmortem changes after death. THC-COOH, which is stored in adipose tissues, could be a major source of THC-COOH found in the FCC.