Cargando…

Current Confinement Effect on the Performance of Blue Light Micro-LEDs with 10 μm Dimension

[Image: see text] The current confinement effect on the micro-LED (μLED) with a 10 μm dimension was simulated using SpeCLED software. In this study, three p-contact sizes were considered: 2 μm × 2 μm, 5 μm × 5 μm, and 8 μm × 8 μm dimensions for μLEDs with a 10 μm dimension. According to the simulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Yu-Hsuan, Lin, Yi-Hsin, Wu, Ming-Hsien, Kuo, Hao Chung, Horng, Ray-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536243/
https://www.ncbi.nlm.nih.gov/pubmed/37779943
http://dx.doi.org/10.1021/acsomega.3c05265
Descripción
Sumario:[Image: see text] The current confinement effect on the micro-LED (μLED) with a 10 μm dimension was simulated using SpeCLED software. In this study, three p-contact sizes were considered: 2 μm × 2 μm, 5 μm × 5 μm, and 8 μm × 8 μm dimensions for μLEDs with a 10 μm dimension. According to the simulation data, the highest external quantum efficiency (EQE) of 13.24% was obtained with a 5 μm × 5 μm contact size. The simulation data also showed that the μLEDs with narrow contact sizes experienced higher operating temperatures due to the current crowding effect. The experimental data revealed a red-shift effect in narrow contact sizes, indicating higher heat generation in those devices. As the contact sizes increased from 2 to 8 μm, the turn-on voltage decreased due to lower equivalent resistance. Additionally, the leakage current increased from 44 pA to 1.6 nA at a reverse voltage of −5 V. The study found that the best performance was achieved with a contact ratio of 0.5, which resulted in the highest EQE at 9.95%. This superior performance can be attributed to the better current confinement of the μLED compared to the μLED with a contact ratio of 0.8, resulting in lower leakage current and improved current spreading when compared to the μLED with a contact ratio of 0.2.