Cargando…

Numerical Simulation of Three-Dimensional Free Surface Flows Using the K–BKZ–PSM Integral Constitutive Equation †

This work introduces a novel numerical method designed to address three-dimensional unsteady free surface flows incorporating integral viscoelastic constitutive equations, specifically the K–BKZ–PSM (Kaye–Bernstein, Kearsley, Zapas–Papanastasiou, Scriven, Macosko) model. The new proposed methodology...

Descripción completa

Detalles Bibliográficos
Autores principales: Bertoco, Juliana, Castelo, Antonio, Ferrás, Luís L., Fernandes, Célio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536245/
https://www.ncbi.nlm.nih.gov/pubmed/37765559
http://dx.doi.org/10.3390/polym15183705
Descripción
Sumario:This work introduces a novel numerical method designed to address three-dimensional unsteady free surface flows incorporating integral viscoelastic constitutive equations, specifically the K–BKZ–PSM (Kaye–Bernstein, Kearsley, Zapas–Papanastasiou, Scriven, Macosko) model. The new proposed methodology employs a second-order finite difference approach along with the deformation fields method to solve the integral constitutive equation and the marker particle method (known as marker-and-cell) to accurately capture the evolution of the fluid’s free surface. The newly developed numerical method has proven its effectiveness in handling complex fluid flow scenarios, including confined flows and extrudate swell simulations of Boger fluids. Furthermore, a new semi-analytical solution for velocity and stress fields is derived, considering fully developed flows of a K–BKZ–PSM fluid in a pipe.