Cargando…
DEJKMDR: miRNA-disease association prediction method based on graph convolutional network
Numerous studies have shown that miRNAs play a crucial role in the investigation of complex human diseases. Identifying the connection between miRNAs and diseases is crucial for advancing the treatment of complex diseases. However, traditional methods are frequently constrained by the small sample s...
Autores principales: | Gao, Shiyuan, Kuang, Zhufang, Duan, Tao, Deng, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536249/ https://www.ncbi.nlm.nih.gov/pubmed/37780568 http://dx.doi.org/10.3389/fmed.2023.1234050 |
Ejemplares similares
-
CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
por: Ma, Zhihao, et al.
Publicado: (2021) -
SVMMDR: Prediction of miRNAs-drug resistance using support vector machines based on heterogeneous network
por: Duan, Tao, et al.
Publicado: (2022) -
GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions
por: He, Jie, et al.
Publicado: (2022) -
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020) -
Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders
por: Liao, Qingquan, et al.
Publicado: (2023)