Cargando…
Efficient human activity recognition with spatio-temporal spiking neural networks
In this study, we explore Human Activity Recognition (HAR), a task that aims to predict individuals' daily activities utilizing time series data obtained from wearable sensors for health-related applications. Although recent research has predominantly employed end-to-end Artificial Neural Netwo...
Autores principales: | Li, Yuhang, Yin, Ruokai, Kim, Youngeun, Panda, Priyadarshini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536255/ https://www.ncbi.nlm.nih.gov/pubmed/37781248 http://dx.doi.org/10.3389/fnins.2023.1233037 |
Ejemplares similares
-
Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
por: Kim, Youngeun, et al.
Publicado: (2023) -
Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch
por: Kim, Youngeun, et al.
Publicado: (2021) -
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
por: Tapson, Jonathan C., et al.
Publicado: (2013) -
Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
por: Kugele, Alexander, et al.
Publicado: (2020) -
Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation
por: Roy, Deboleena, et al.
Publicado: (2019)