Cargando…
Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications
This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material’s electric...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536266/ https://www.ncbi.nlm.nih.gov/pubmed/37765919 http://dx.doi.org/10.3390/s23187855 |
_version_ | 1785112825051480064 |
---|---|
author | Jała, Jakub Nowacki, Bartłomiej Toroń, Bartłomiej |
author_facet | Jała, Jakub Nowacki, Bartłomiej Toroń, Bartłomiej |
author_sort | Jała, Jakub |
collection | PubMed |
description | This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material’s electrical resistivity, piezoelectric response, and energy-harvesting capabilities are systematically analyzed under various deflection conditions and excitation frequencies. The piezoelectric response is characterized by the generation of charge carriers in the material due to mechanical strain, resulting in voltage output. The fundamental phenomena of charge generation, along with their influence on the material’s resistivity, are proposed. Dynamic strain testing reveals the composite’s potential as a piezoelectric nanogenerator (PENG), converting mechanical energy into electrical energy. Comparative analyses highlight the composite’s power density advantages, thereby demonstrating its potential for energy-harvesting applications. This research provides insights into the interplay between piezoelectric and piezotronic phenomena in nanocomposites and their applicability in energy-harvesting devices. |
format | Online Article Text |
id | pubmed-10536266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105362662023-09-29 Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications Jała, Jakub Nowacki, Bartłomiej Toroń, Bartłomiej Sensors (Basel) Article This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material’s electrical resistivity, piezoelectric response, and energy-harvesting capabilities are systematically analyzed under various deflection conditions and excitation frequencies. The piezoelectric response is characterized by the generation of charge carriers in the material due to mechanical strain, resulting in voltage output. The fundamental phenomena of charge generation, along with their influence on the material’s resistivity, are proposed. Dynamic strain testing reveals the composite’s potential as a piezoelectric nanogenerator (PENG), converting mechanical energy into electrical energy. Comparative analyses highlight the composite’s power density advantages, thereby demonstrating its potential for energy-harvesting applications. This research provides insights into the interplay between piezoelectric and piezotronic phenomena in nanocomposites and their applicability in energy-harvesting devices. MDPI 2023-09-13 /pmc/articles/PMC10536266/ /pubmed/37765919 http://dx.doi.org/10.3390/s23187855 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jała, Jakub Nowacki, Bartłomiej Toroń, Bartłomiej Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications |
title | Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications |
title_full | Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications |
title_fullStr | Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications |
title_full_unstemmed | Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications |
title_short | Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications |
title_sort | piezotronic antimony sulphoiodide/polyvinylidene composite for strain-sensing and energy-harvesting applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536266/ https://www.ncbi.nlm.nih.gov/pubmed/37765919 http://dx.doi.org/10.3390/s23187855 |
work_keys_str_mv | AT jałajakub piezotronicantimonysulphoiodidepolyvinylidenecompositeforstrainsensingandenergyharvestingapplications AT nowackibartłomiej piezotronicantimonysulphoiodidepolyvinylidenecompositeforstrainsensingandenergyharvestingapplications AT toronbartłomiej piezotronicantimonysulphoiodidepolyvinylidenecompositeforstrainsensingandenergyharvestingapplications |