Cargando…

Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications

This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material’s electric...

Descripción completa

Detalles Bibliográficos
Autores principales: Jała, Jakub, Nowacki, Bartłomiej, Toroń, Bartłomiej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536266/
https://www.ncbi.nlm.nih.gov/pubmed/37765919
http://dx.doi.org/10.3390/s23187855
_version_ 1785112825051480064
author Jała, Jakub
Nowacki, Bartłomiej
Toroń, Bartłomiej
author_facet Jała, Jakub
Nowacki, Bartłomiej
Toroń, Bartłomiej
author_sort Jała, Jakub
collection PubMed
description This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material’s electrical resistivity, piezoelectric response, and energy-harvesting capabilities are systematically analyzed under various deflection conditions and excitation frequencies. The piezoelectric response is characterized by the generation of charge carriers in the material due to mechanical strain, resulting in voltage output. The fundamental phenomena of charge generation, along with their influence on the material’s resistivity, are proposed. Dynamic strain testing reveals the composite’s potential as a piezoelectric nanogenerator (PENG), converting mechanical energy into electrical energy. Comparative analyses highlight the composite’s power density advantages, thereby demonstrating its potential for energy-harvesting applications. This research provides insights into the interplay between piezoelectric and piezotronic phenomena in nanocomposites and their applicability in energy-harvesting devices.
format Online
Article
Text
id pubmed-10536266
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105362662023-09-29 Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications Jała, Jakub Nowacki, Bartłomiej Toroń, Bartłomiej Sensors (Basel) Article This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material’s electrical resistivity, piezoelectric response, and energy-harvesting capabilities are systematically analyzed under various deflection conditions and excitation frequencies. The piezoelectric response is characterized by the generation of charge carriers in the material due to mechanical strain, resulting in voltage output. The fundamental phenomena of charge generation, along with their influence on the material’s resistivity, are proposed. Dynamic strain testing reveals the composite’s potential as a piezoelectric nanogenerator (PENG), converting mechanical energy into electrical energy. Comparative analyses highlight the composite’s power density advantages, thereby demonstrating its potential for energy-harvesting applications. This research provides insights into the interplay between piezoelectric and piezotronic phenomena in nanocomposites and their applicability in energy-harvesting devices. MDPI 2023-09-13 /pmc/articles/PMC10536266/ /pubmed/37765919 http://dx.doi.org/10.3390/s23187855 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jała, Jakub
Nowacki, Bartłomiej
Toroń, Bartłomiej
Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications
title Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications
title_full Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications
title_fullStr Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications
title_full_unstemmed Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications
title_short Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications
title_sort piezotronic antimony sulphoiodide/polyvinylidene composite for strain-sensing and energy-harvesting applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536266/
https://www.ncbi.nlm.nih.gov/pubmed/37765919
http://dx.doi.org/10.3390/s23187855
work_keys_str_mv AT jałajakub piezotronicantimonysulphoiodidepolyvinylidenecompositeforstrainsensingandenergyharvestingapplications
AT nowackibartłomiej piezotronicantimonysulphoiodidepolyvinylidenecompositeforstrainsensingandenergyharvestingapplications
AT toronbartłomiej piezotronicantimonysulphoiodidepolyvinylidenecompositeforstrainsensingandenergyharvestingapplications