Cargando…

Preparation and Properties of Poly(vinyl acetate) Adhesive Modified with Vinyl Versatate

A series of vinyl versatate (VV10) modified poly(vinyl acetate) adhesive (HVPVAc) were prepared using soap-free emulsion polymerization. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to characterize the structure of the modified poly(vinyl acetate) latex. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Guoyan, Wang, Le, Wang, Xiaorong, Wang, Chengjun, Li, Xi, Li, Lu, Ma, Hongfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536315/
https://www.ncbi.nlm.nih.gov/pubmed/37764408
http://dx.doi.org/10.3390/molecules28186634
Descripción
Sumario:A series of vinyl versatate (VV10) modified poly(vinyl acetate) adhesive (HVPVAc) were prepared using soap-free emulsion polymerization. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to characterize the structure of the modified poly(vinyl acetate) latex. The effect of the VV10 content on particle size, viscosity, mechanical properties, and T-peel strength of the modified poly(vinyl acetate) was determined. No absorption peak at 1675–1500 cm(−1) in the ATR-FTIR spectrum was observed as a result of the carbon-carbon double bond reacting completely. With the occurrence of -C-O-C and the disappearance of the carbon-carbon double bond in the FTIR spectrum, a more complex structure formed. The structure improves the mechanical properties. Increasing the VV10 content resulted in an increase in particle size from 63 nm to 221 nm, a steady increase in the viscosity of the HVPVAc latex, an increase in tensile strength from 7 MPa to 13.4 MPa, and a decrease in breaking elongation from 1310% to 1004%. As the VV10 content increased from 0 to 30% by weight, the T-peel strength of the HVPVAc adhesive increased from 8.35 N/mm to 18.97 N/mm, indicating improved adhesive performance.