Cargando…
Composition of Vapor–Liquid–Solid III–V Ternary Nanowires Based on Group-III Intermix
Compositional control in III–V ternary nanowires grown by the vapor–liquid–solid method is essential for bandgap engineering and the design of functional nanowire nano-heterostructures. Herein, we present rather general theoretical considerations and derive explicit forms of the stationary vapor–sol...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536332/ https://www.ncbi.nlm.nih.gov/pubmed/37764561 http://dx.doi.org/10.3390/nano13182532 |
Sumario: | Compositional control in III–V ternary nanowires grown by the vapor–liquid–solid method is essential for bandgap engineering and the design of functional nanowire nano-heterostructures. Herein, we present rather general theoretical considerations and derive explicit forms of the stationary vapor–solid and liquid–solid distributions of vapor–liquid–solid III–V ternary nanowires based on group-III intermix. It is shown that the vapor–solid distribution of such nanowires is kinetically controlled, while the liquid–solid distribution is in equilibrium or nucleation-limited. For a more technologically important vapor-solid distribution connecting nanowire composition with vapor composition, the kinetic suppression of miscibility gaps at a growth temperature is possible, while miscibility gaps (and generally strong non-linearity of the compositional curves) always remain in the equilibrium liquid–solid distribution. We analyze the available experimental data on the compositions of the vapor–liquid–solid Al(x)Ga(1−x)As, In(x)Ga(1−x)As, In(x)Ga(1−x)P, and In(x)Ga(1−x)N nanowires, which are very well described within the model. Overall, the developed approach circumvents uncertainty in choosing the relevant compositional model (close-to-equilibrium or kinetic), eliminates unknown parameters in the vapor–solid distribution of vapor–liquid–solid nanowires based on group-III intermix, and should be useful for the precise compositional tuning of such nanowires. |
---|