Cargando…

Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies

This paper presents comprehensive guidelines for the design and analysis of a thin diaphragm that is used in a variety of microsystems, including microphones and pressure sensors. It highlights the empirical relations that can be utilized for the design of thin diaphragm-based microsystems (TDMS). D...

Descripción completa

Detalles Bibliográficos
Autores principales: Belwanshi, Vinod, Rane, Kedarnath, Kumar, Vibhor, Pramanick, Bidhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536382/
https://www.ncbi.nlm.nih.gov/pubmed/37763887
http://dx.doi.org/10.3390/mi14091725
_version_ 1785112852506345472
author Belwanshi, Vinod
Rane, Kedarnath
Kumar, Vibhor
Pramanick, Bidhan
author_facet Belwanshi, Vinod
Rane, Kedarnath
Kumar, Vibhor
Pramanick, Bidhan
author_sort Belwanshi, Vinod
collection PubMed
description This paper presents comprehensive guidelines for the design and analysis of a thin diaphragm that is used in a variety of microsystems, including microphones and pressure sensors. It highlights the empirical relations that can be utilized for the design of thin diaphragm-based microsystems (TDMS). Design guidelines developed through a Finite Element Analysis (FEA) limit the iterative efforts to fabricate TDMS. These design guidelines are validated analytically, with the assumption that the material properties are isotropic, and the deviation from anisotropic material is calculated. In the FEA simulations, a large deflection theory is taken into account to incorporate nonlinearity, such that a critical dimensional ratio of [Formula: see text] or [Formula: see text] can be decided to have the linear response of a thin diaphragm. The observed differences of 12% in the deflection and 13% in the induced stresses from the analytical calculations are attributed to the anisotropic material consideration in the FEA model. It suggests that, up to a critical ratio ([Formula: see text] or [Formula: see text]), the thin diaphragm shows a linear relationship with a high sensitivity. The study also presents a few empirical relations to finalize the geometrical parameters of the thin diaphragm in terms of its edge length or radius and thickness. Utilizing the critical ratio calculated in the static FEA analysis, the basic conventional geometries are considered for harmonic analyses to understand the frequency response of the thin diaphragms, which is a primary sensing element for microphone applications and many more. This work provides a solution to microelectromechanical system (MEMS) developers for reducing cost and time while conceptualizing TDMS designs.
format Online
Article
Text
id pubmed-10536382
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105363822023-09-29 Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies Belwanshi, Vinod Rane, Kedarnath Kumar, Vibhor Pramanick, Bidhan Micromachines (Basel) Article This paper presents comprehensive guidelines for the design and analysis of a thin diaphragm that is used in a variety of microsystems, including microphones and pressure sensors. It highlights the empirical relations that can be utilized for the design of thin diaphragm-based microsystems (TDMS). Design guidelines developed through a Finite Element Analysis (FEA) limit the iterative efforts to fabricate TDMS. These design guidelines are validated analytically, with the assumption that the material properties are isotropic, and the deviation from anisotropic material is calculated. In the FEA simulations, a large deflection theory is taken into account to incorporate nonlinearity, such that a critical dimensional ratio of [Formula: see text] or [Formula: see text] can be decided to have the linear response of a thin diaphragm. The observed differences of 12% in the deflection and 13% in the induced stresses from the analytical calculations are attributed to the anisotropic material consideration in the FEA model. It suggests that, up to a critical ratio ([Formula: see text] or [Formula: see text]), the thin diaphragm shows a linear relationship with a high sensitivity. The study also presents a few empirical relations to finalize the geometrical parameters of the thin diaphragm in terms of its edge length or radius and thickness. Utilizing the critical ratio calculated in the static FEA analysis, the basic conventional geometries are considered for harmonic analyses to understand the frequency response of the thin diaphragms, which is a primary sensing element for microphone applications and many more. This work provides a solution to microelectromechanical system (MEMS) developers for reducing cost and time while conceptualizing TDMS designs. MDPI 2023-09-01 /pmc/articles/PMC10536382/ /pubmed/37763887 http://dx.doi.org/10.3390/mi14091725 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Belwanshi, Vinod
Rane, Kedarnath
Kumar, Vibhor
Pramanick, Bidhan
Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
title Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
title_full Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
title_fullStr Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
title_full_unstemmed Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
title_short Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
title_sort design guidelines for thin diaphragm-based microsystems through comprehensive numerical and analytical studies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536382/
https://www.ncbi.nlm.nih.gov/pubmed/37763887
http://dx.doi.org/10.3390/mi14091725
work_keys_str_mv AT belwanshivinod designguidelinesforthindiaphragmbasedmicrosystemsthroughcomprehensivenumericalandanalyticalstudies
AT ranekedarnath designguidelinesforthindiaphragmbasedmicrosystemsthroughcomprehensivenumericalandanalyticalstudies
AT kumarvibhor designguidelinesforthindiaphragmbasedmicrosystemsthroughcomprehensivenumericalandanalyticalstudies
AT pramanickbidhan designguidelinesforthindiaphragmbasedmicrosystemsthroughcomprehensivenumericalandanalyticalstudies