Cargando…
Three-Dimensional Printing of Large Objects with High Resolution by Dynamic Projection Scanning Lithography
Due to the development of printing materials, light-cured 3D printing is playing an increasingly important role in industrial and consumer markets for prototype manufacturing and conceptual design due to its advantages in high-precision and high-surface finish. Despite its widespread use, it is stil...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536501/ https://www.ncbi.nlm.nih.gov/pubmed/37763863 http://dx.doi.org/10.3390/mi14091700 |
Sumario: | Due to the development of printing materials, light-cured 3D printing is playing an increasingly important role in industrial and consumer markets for prototype manufacturing and conceptual design due to its advantages in high-precision and high-surface finish. Despite its widespread use, it is still difficult to achieve the 3D printing requirements of large volume, high resolution, and high speed. Currently, traditional light-cured 3D printing technologies based on stereolithography, such as regular DLP and SLA, can no longer meet the requirements of the processing size and processing rate. This paper introduces a dynamic projection of 3D printing technology utilizing a digital micro-mirror device (DMD). By projecting the ultraviolet light pattern in the form of “animation”, the printing resin is continuously cured in the exposure process to form the required three-dimensional structure. To print large-size objects, the three-dimensional model is sliced into high-resolution sectional images, and each layer of the sectional image is further divided into sub-regional images. These images are dynamically exposed to the light-curing material and are synchronized with the scanning motion of the projection lens to form a static exposure pattern in the construction area. Combined with the digital super-resolution, this system can achieve the layering and fine printing of large-size objects up to 400 × 400 × 200 mm, with a minimum feature size of 45 μm. This technology can achieve large-size, high-precision structural printing in industrial fields such as automobiles and aviation, promoting structural design, performance verification, product pre-production, and final part processing. Its printing speed and material bending characteristics are superior to existing DLP light-curing 3D printing methods. |
---|