Cargando…

Nitric Oxide Detection Using a Chemical Trap Method for Applications in Bacterial Systems †

Plant growth-promoting bacteria (PGPB) can be incorporated in biofertilizer formulations, which promote plant growth in different ways, such as fixing nitrogen and producing phytohormones and nitric oxide (NO). NO is a free radical involved in the growth and defense responses of plants and bacteria....

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Marilene Silva, Santos, Karina F. D. N., de Paula, Railane Monteiro, Vitorino, Luciana C., Bessa, Layara A., Greer, Alexander, Di Mascio, Paolo, de Souza, João C. P., Martin-Didonet, Claudia C. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536504/
https://www.ncbi.nlm.nih.gov/pubmed/37764053
http://dx.doi.org/10.3390/microorganisms11092210
Descripción
Sumario:Plant growth-promoting bacteria (PGPB) can be incorporated in biofertilizer formulations, which promote plant growth in different ways, such as fixing nitrogen and producing phytohormones and nitric oxide (NO). NO is a free radical involved in the growth and defense responses of plants and bacteria. NO detection is vital for further investigation in different agronomically important bacteria. NO production in the presence of KNO(3) was evaluated over 1–3 days using eight bacterial strains, quantified by the usual Griess reaction, and monitored by 2,3-diaminonaphthalene (DAN), yielding 2,3-naphthotriazole (NAT), as analyzed by fluorescence spectroscopy, gas chromatography–mass spectrometry, and high-performance liquid chromatography. The Greiss and trapping reaction results showed that Azospirillum brasilense (HM053 and FP2), Rhizobium tropici (Br322), and Gluconacetobacter diazotrophicus (Pal 5) produced the highest NO levels 24 h after inoculation, whereas Nitrospirillum amazonense (Y2) and Herbaspirillum seropedicae (SmR1) showed no NO production. In contrast to the literature, in NFbHP–NH(4)Cl–lactate culture medium with KNO(3), NO trapping led to the recovery of a product with a molecular mass ion of 182 Da, namely, 1,2,3,4-naphthotetrazole (NTT), which contained one more nitrogen atom than the usual NAT product with 169 Da. This strategy allows monitoring and tracking NO production in potential biofertilizing bacteria, providing future opportunities to better understand the mechanisms of bacteria–plant interaction and also to manipulate the amount of NO that will sustain the PGPB.