Cargando…

Multi-Physically Cross-Linked Hydrogels for Flexible Sensors with High Strength and Self-Healing Properties

Excellent mechanical properties and self-healing properties are very important for the practical application of hydrogel flexible sensors. In this study, acrylic acid and stearyl methyl acrylate were selected as monomers to synthesize hydrophobic association hydrogels, and multi-physically cross-lin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yulin, Wang, Shiyu, Tian, Yi, Chen, Long, Du, Yuhan, Su, Gehong, Hu, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536548/
https://www.ncbi.nlm.nih.gov/pubmed/37765600
http://dx.doi.org/10.3390/polym15183748
Descripción
Sumario:Excellent mechanical properties and self-healing properties are very important for the practical application of hydrogel flexible sensors. In this study, acrylic acid and stearyl methyl acrylate were selected as monomers to synthesize hydrophobic association hydrogels, and multi-physically cross-linked hydrogels were synthesized by adding ferric chloride and polyvinyl alcohol to introduce ion interaction and a hydrogen bond cross-linking network. The hydrogels were characterized by FTIR, XRD and SEM, and the mechanical properties and self-healing properties were tested using a universal testing machine. It was confirmed that the strength of the hydrogel was significantly improved with the addition of ferric chloride and polyvinyl alcohol, and the hydrogel still showed good self-healing properties. Further testing of its application as a conductive sensor has demonstrated sensitive and stable motion sensing capabilities. This provides an important reference for high-performance hydrogel sensors with both high strength and self-healing properties.