Cargando…

Evaluation of the Toxicity Potential of the Metabolites of Di-Isononyl Phthalate and of Their Interactions with Members of Family 1 of Sulfotransferases—A Computational Study

Di-isononyl phthalates are chemicals that are widely used as plasticizers. Humans are extensively exposed to these compounds by dietary intake, through inhalation and skin absorption. Sulfotransferases (SULTs) are enzymes responsible for the detoxification and elimination of numerous endogenous and...

Descripción completa

Detalles Bibliográficos
Autores principales: Ceauranu, Silvana, Ciorsac, Alecu, Ostafe, Vasile, Isvoran, Adriana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536557/
https://www.ncbi.nlm.nih.gov/pubmed/37764524
http://dx.doi.org/10.3390/molecules28186748
Descripción
Sumario:Di-isononyl phthalates are chemicals that are widely used as plasticizers. Humans are extensively exposed to these compounds by dietary intake, through inhalation and skin absorption. Sulfotransferases (SULTs) are enzymes responsible for the detoxification and elimination of numerous endogenous and exogenous molecules from the body. Consequently, SULTs are involved in regulating the biological activity of various hormones and neurotransmitters. The present study considers a computational approach to predict the toxicological potential of the metabolites of di-isononyl phthalate. Furthermore, molecular docking was considered to evaluate the inhibitory potential of these metabolites against the members of family 1 of SULTs. The metabolites of di-isononyl phthalate reveal a potency to cause liver damage and to inhibit receptors activated by peroxisome proliferators. These metabolites are also usually able to inhibit the activity of the members of family 1 of SULTs, except for SULT1A3 and SULT1B1. The outcomes of this study are important for an enhanced understanding of the risk of human exposure to di-isononyl phthalates.