Cargando…
FS-RSDD: Few-Shot Rail Surface Defect Detection with Prototype Learning
As an important component of the railway system, the surface damage that occurs on the rails due to daily operations can pose significant safety hazards. This paper proposes a simple yet effective rail surface defect detection model, FS-RSDD, for rail surface condition monitoring, which also aims to...
Autores principales: | Min, Yongzhi, Wang, Ziwei, Liu, Yang, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536558/ https://www.ncbi.nlm.nih.gov/pubmed/37765951 http://dx.doi.org/10.3390/s23187894 |
Ejemplares similares
-
CLIP-Driven Prototype Network for Few-Shot Semantic Segmentation
por: Guo, Shi-Cheng, et al.
Publicado: (2023) -
Few Shot Class Incremental Learning via Efficient Prototype Replay and Calibration
por: Zhang, Wei, et al.
Publicado: (2023) -
Few-Shot network intrusion detection based on prototypical capsule network with attention mechanism
por: Sun, Handi, et al.
Publicado: (2023) -
Ensemble model for rail surface defects detection
por: Li, Hailang, et al.
Publicado: (2022) -
On the Use of Microwave Holography to Detect Surface Defects of Rails and Measure the Rail Profile
por: Zhuravlev, Andrey, et al.
Publicado: (2019)