Cargando…

A Non-Intrusive Monitoring System on Train Pantographs for the Maintenance of Overhead Contact Lines

The condition monitoring of an overhead contact line (OCL) is investigated by developing an innovative monitoring system for a pantograph on an electrical multiple unit of a regional line. Kinematic and dynamic modelling of the pantograph is conducted to support the designed monitoring system. The m...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodríguez-Arana, Borja, Ciáurriz, Pablo, Gil-Negrete, Nere, Alvarado, Unai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536569/
https://www.ncbi.nlm.nih.gov/pubmed/37765946
http://dx.doi.org/10.3390/s23187890
Descripción
Sumario:The condition monitoring of an overhead contact line (OCL) is investigated by developing an innovative monitoring system for a pantograph on an electrical multiple unit of a regional line. Kinematic and dynamic modelling of the pantograph is conducted to support the designed monitoring system. The modelling is proved through rigorous test-rig experiments, while the proposed methodology is then validated through extensive field tests. The field tests serve a dual purpose: First, to validate the monitoring system using benchmark measurements of the tCat(®) trolley, and second, to assess the reproducibility of measurements in a realistic case. This paper presents the OCL monitoring system developed in the framework of the H2020 project SIA. The accuracy of our results is not far from that of other commercial systems, with just 12 mm of absolute error in the height measurement. Therefore, they provide reliable information about trends in various key performance indicators (KPIs) that facilitates the early detection of failures and the diagnosis of anomalies. The results highlight the importance of model calibration and validation in enabling novel health monitoring capabilities for the pantograph. By continuously monitoring the parameters and tracking their degradation trends, our approach allows for optimized scheduling of maintenance tasks for the OCL.