Cargando…

Surface Modification of ZnO with Sn(IV)-Porphyrin for Enhanced Visible Light Photocatalytic Degradation of Amaranth Dye

Two hybrid composite photocatalysts, denoted as SnP/AA@ZnO and SnP@ZnO, were fabricated by a reaction of trans-dihydroxo[5,10,15,20-tetrakis(4-pyridyl)porphyrinato]tin(IV) (SnP) and ZnO with and without pretreatment of adipic acid (AA), respectively. In SnP@ZnO, SnP and ZnO are likely held together...

Descripción completa

Detalles Bibliográficos
Autores principales: Shee, Nirmal Kumar, Kim, Hee-Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536602/
https://www.ncbi.nlm.nih.gov/pubmed/37764257
http://dx.doi.org/10.3390/molecules28186481
Descripción
Sumario:Two hybrid composite photocatalysts, denoted as SnP/AA@ZnO and SnP@ZnO, were fabricated by a reaction of trans-dihydroxo[5,10,15,20-tetrakis(4-pyridyl)porphyrinato]tin(IV) (SnP) and ZnO with and without pretreatment of adipic acid (AA), respectively. In SnP@ZnO, SnP and ZnO are likely held together by a coordinative interaction between the pyridyl N atoms of SnP and the Zn atoms on the surface of ZnO. In the case of SnP/AA@ZnO, the SnP centers were robustly coupled with ZnO nanoparticles through the AA anchors. SnP/AA@ZnO exhibited largely enhanced photocatalytic activities for the degradation of anionic amaranth (AM) dye under a visible light irradiation, compared to SnP, ZnO, and SnP@ZnO. The degradation efficiency of AM by SnP/AA@ZnO was 95% within 60 min at a rate constant of 0.048 min(−1). The remarkable photocatalytic oxidation performance of SnP/AA@ZnO was mainly attributed to the synergistic effect between SnP and ZnO. This study is valuable for the development of highly effective composite photocatalytic systems in advanced oxidation processes and is of importance for the treatment of wastewater containing dyes.