Cargando…
Multichannel One-Dimensional Data Augmentation with Generative Adversarial Network
Data augmentation is one of the most important problems in deep learning. There have been many algorithms proposed to solve this problem, such as simple noise injection, the generative adversarial network (GAN), and diffusion models. However, to the best of our knowledge, these works mainly focused...
Autores principales: | Kosasih, David Ishak, Lee, Byung-Gook, Lim, Hyotaek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536615/ https://www.ncbi.nlm.nih.gov/pubmed/37765750 http://dx.doi.org/10.3390/s23187693 |
Ejemplares similares
-
An Unsupervised Learning-Based Spatial Co-Location Detection System from Low-Power Consumption Sensor †
por: Kosasih, David Ishak, et al.
Publicado: (2021) -
Robust Data Augmentation Generative Adversarial Network for Object Detection
por: Lee, Hyungtak, et al.
Publicado: (2022) -
Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
por: Li, Yuanming, et al.
Publicado: (2020) -
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset
por: Lyra, Simon, et al.
Publicado: (2023)