Cargando…
Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs
SIMPLE SUMMARY: Corn-fermented protein, a co-product of ethanol production, can be utilized as a protein source for pet food. Currently, there are no studies that have evaluated the impact of this ingredient on the fecal microbiota of dogs, an indicator of animal health. The overall richness and div...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536651/ https://www.ncbi.nlm.nih.gov/pubmed/37756074 http://dx.doi.org/10.3390/vetsci10090553 |
Sumario: | SIMPLE SUMMARY: Corn-fermented protein, a co-product of ethanol production, can be utilized as a protein source for pet food. Currently, there are no studies that have evaluated the impact of this ingredient on the fecal microbiota of dogs, an indicator of animal health. The overall richness and diversity of the fecal microbiota were maintained when dogs were fed corn-fermented protein compared to traditional ingredients such as brewer’s dried yeast and distiller’s dried grains with solubles. ABSTRACT: Corn-fermented protein (CFP), a co-product from the ethanol industry, is produced using post-fermentation technology to split the protein and yeast from fiber prior to drying. The objective of this study was to determine the effect of CFP compared to traditional ingredients on the fecal microbiota of dogs. The four experimental diets included a control with no yeast and diets containing either 3.5% brewer’s dried yeast, 2.5% brewer’s dried yeast plus 17.5% distiller’s dried grains with solubles, or 17.5% CFP. The experimental diets were fed to adult dogs (n = 12) in a 4 × 4 replicated Latin square design. Fresh fecal samples (n = 48) were analyzed by 16S metagenomic sequencing. Raw sequences were processed through mothur. Community diversity was evaluated in R. Relative abundance data were analyzed within the 50 most abundant operational taxonomic units using a mixed model of SAS. Alpha and beta diversity were similar for all treatments. Predominant phyla among all samples were Firmicutes (73%), Bacteroidetes (15%), Fusobacteria (8%), and Actinobacteria (4%). There were no quantifiable (p > 0.05) shifts in the predominant phyla among the treatments. However, nine genera resulted in differences in relative abundance among the treatments. These data indicate that compared to traditional ingredients, CFP did not alter the overall diversity of the fecal microbiota of healthy adult dogs over 14 days. |
---|