Cargando…
Automatic echocardiographic anomalies interpretation using a stacked residual-dense network model
Echocardiographic interpretation during the prenatal or postnatal period is important for diagnosing cardiac septal abnormalities. However, manual interpretation can be time consuming and subject to human error. Automatic segmentation of echocardiogram can support cardiologists in making an initial...
Autores principales: | Nurmaini, Siti, Sapitri, Ade Iriani, Tutuko, Bambang, Rachmatullah, Muhammad Naufal, Rini, Dian Palupi, Darmawahyuni, Annisa, Firdaus, Firdaus, Mandala, Satria, Nova, Ria, Bernolian, Nuswil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536702/ https://www.ncbi.nlm.nih.gov/pubmed/37759158 http://dx.doi.org/10.1186/s12859-023-05493-9 |
Ejemplares similares
-
Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection
por: Nurmaini, Siti, et al.
Publicado: (2021) -
Deep Learning for Improving the Effectiveness of Routine Prenatal Screening for Major Congenital Heart Diseases
por: Nurmaini, Siti, et al.
Publicado: (2022) -
AFibNet: an implementation of atrial fibrillation detection with convolutional neural network
por: Tutuko, Bambang, et al.
Publicado: (2021) -
Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification
por: Darmawahyuni, Annisa, et al.
Publicado: (2022) -
Improved delineation model of a standard 12-lead electrocardiogram based on a deep learning algorithm
por: Darmawahyuni, Annisa, et al.
Publicado: (2023)