Cargando…
A heterogeneous graph convolutional attention network method for classification of autism spectrum disorder
BACKGROUND: Autism spectrum disorder (ASD) is a serious developmental disorder of the brain. Recently, various deep learning methods based on functional magnetic resonance imaging (fMRI) data have been developed for the classification of ASD. Among them, graph neural networks, which generalize deep...
Autores principales: | Shao, Lizhen, Fu, Cong, Chen, Xunying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536734/ https://www.ncbi.nlm.nih.gov/pubmed/37759189 http://dx.doi.org/10.1186/s12859-023-05495-7 |
Ejemplares similares
-
Multi-View Feature Enhancement Based on Self-Attention Mechanism Graph Convolutional Network for Autism Spectrum Disorder Diagnosis
por: Zhao, Feng, et al.
Publicado: (2022) -
An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification
por: Li, Menglei, et al.
Publicado: (2022) -
Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
por: Li, Xiaowen, et al.
Publicado: (2022) -
CNNG: A Convolutional Neural Networks With Gated Recurrent Units for Autism Spectrum Disorder Classification
por: Jiang, Wenjing, et al.
Publicado: (2022) -
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022)