Cargando…
Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation
Chronic pain is the most common symptom for people who suffer from rheumatoid arthritis and it affects approximately 1% of the global population. Neuroinflammation in the spinal cord induces chronic arthritis pain. In this study, a collagen-induced arthritis (CIA) mice model was established through...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536840/ https://www.ncbi.nlm.nih.gov/pubmed/37699859 http://dx.doi.org/10.1177/17448069231204051 |
_version_ | 1785112963337682944 |
---|---|
author | Wang, Qin Chen, Tao Shuqing, Zhen Yu, Liangzhu Chen, Shaohui Lu, Hong Zhu, Haili Min, Xie Li, Xiong Liu, Ling |
author_facet | Wang, Qin Chen, Tao Shuqing, Zhen Yu, Liangzhu Chen, Shaohui Lu, Hong Zhu, Haili Min, Xie Li, Xiong Liu, Ling |
author_sort | Wang, Qin |
collection | PubMed |
description | Chronic pain is the most common symptom for people who suffer from rheumatoid arthritis and it affects approximately 1% of the global population. Neuroinflammation in the spinal cord induces chronic arthritis pain. In this study, a collagen-induced arthritis (CIA) mice model was established through intradermally injection of type II collagen in complete Freund’s adjuvant solution. Following CIA inducement, the paws and ankles of mice were found to swell, mechanical pain and spontaneous pain were induced, and their motor coordination was impaired. The spinal inflammatory reaction was triggered, which presented as severe infiltration of inflammatory cells, and the expression levels of GFAP, IL-1β, NLRP3, and cleaved caspase-1 increased. Oxidative stress in the spinal cord of CIA mice was manifested as reduced Nrf2 and NDUFB11 expression and SOD activity, and increased levels of DHODH and Cyto-C. At the same time, spinal AMPK activity was decreased. In order to explore the potential therapeutic options for arthritic pain, Xanthohumol (Xn) was intraperitoneally injected into mice for three consecutive days. Xn treatment was found to reduce the number of spontaneous flinches, in addition to elevating mechanical pain thresholds and increasing latency time. At the same time, Xn treatment in the spinal cord reduced NLRP3 inflammasome-mediated inflammation, increased the Nrf2-mediated antioxidant response, and decreased mitochondrial ROS level. In addition, Xn was found to bind with AMPK via two electrovalent bonds and increased AMPK phosphorylation at Thr174. In summary, the findings indicate that Xn treatment activates AMPK, increases Nrf2-mediated antioxidant response, reduces Drp1-mediated mitochondrial dysfunction, suppresses neuroinflammation, and can serve to relieve arthritis pain. |
format | Online Article Text |
id | pubmed-10536840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-105368402023-09-29 Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation Wang, Qin Chen, Tao Shuqing, Zhen Yu, Liangzhu Chen, Shaohui Lu, Hong Zhu, Haili Min, Xie Li, Xiong Liu, Ling Mol Pain Research Article Chronic pain is the most common symptom for people who suffer from rheumatoid arthritis and it affects approximately 1% of the global population. Neuroinflammation in the spinal cord induces chronic arthritis pain. In this study, a collagen-induced arthritis (CIA) mice model was established through intradermally injection of type II collagen in complete Freund’s adjuvant solution. Following CIA inducement, the paws and ankles of mice were found to swell, mechanical pain and spontaneous pain were induced, and their motor coordination was impaired. The spinal inflammatory reaction was triggered, which presented as severe infiltration of inflammatory cells, and the expression levels of GFAP, IL-1β, NLRP3, and cleaved caspase-1 increased. Oxidative stress in the spinal cord of CIA mice was manifested as reduced Nrf2 and NDUFB11 expression and SOD activity, and increased levels of DHODH and Cyto-C. At the same time, spinal AMPK activity was decreased. In order to explore the potential therapeutic options for arthritic pain, Xanthohumol (Xn) was intraperitoneally injected into mice for three consecutive days. Xn treatment was found to reduce the number of spontaneous flinches, in addition to elevating mechanical pain thresholds and increasing latency time. At the same time, Xn treatment in the spinal cord reduced NLRP3 inflammasome-mediated inflammation, increased the Nrf2-mediated antioxidant response, and decreased mitochondrial ROS level. In addition, Xn was found to bind with AMPK via two electrovalent bonds and increased AMPK phosphorylation at Thr174. In summary, the findings indicate that Xn treatment activates AMPK, increases Nrf2-mediated antioxidant response, reduces Drp1-mediated mitochondrial dysfunction, suppresses neuroinflammation, and can serve to relieve arthritis pain. SAGE Publications 2023-09-27 /pmc/articles/PMC10536840/ /pubmed/37699859 http://dx.doi.org/10.1177/17448069231204051 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Research Article Wang, Qin Chen, Tao Shuqing, Zhen Yu, Liangzhu Chen, Shaohui Lu, Hong Zhu, Haili Min, Xie Li, Xiong Liu, Ling Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation |
title | Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation |
title_full | Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation |
title_fullStr | Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation |
title_full_unstemmed | Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation |
title_short | Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation |
title_sort | xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536840/ https://www.ncbi.nlm.nih.gov/pubmed/37699859 http://dx.doi.org/10.1177/17448069231204051 |
work_keys_str_mv | AT wangqin xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT chentao xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT shuqingzhen xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT yuliangzhu xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT chenshaohui xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT luhong xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT zhuhaili xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT minxie xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT lixiong xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation AT liuling xanthohumolrelievesarthritispaininmicebysuppressingmitochondrialmediatedinflammation |