Cargando…
Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain–Computer Interfaces by Using Multi-Branch CNN
A brain–computer interface (BCI) is a computer-based system that allows for communication between the brain and the outer world, enabling users to interact with computers using neural activity. This brain signal is obtained from electroencephalogram (EEG) signals. A significant obstacle to the devel...
Autores principales: | Chowdhury, Radia Rayan, Muhammad, Yar, Adeel, Usman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536894/ https://www.ncbi.nlm.nih.gov/pubmed/37765965 http://dx.doi.org/10.3390/s23187908 |
Ejemplares similares
-
Subject-Independent EEG Classification of Motor Imagery Based on Dual-Branch Feature Fusion
por: Dong, Yanqing, et al.
Publicado: (2023) -
A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding
por: Yang, Jun, et al.
Publicado: (2022) -
Analysis of the Relationship Between Motor Imagery and Age-Related Fatigue for CNN Classification of the EEG Data
por: Li, Xiangyun, et al.
Publicado: (2022) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022)