Cargando…

A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET)

The complementary field-effect transistor (CFET) with N-type FET (NFET) stacked on P-type FET (PFET) is a promising device structure based on gate-all-around FET (GAAFET). Because of the high-density stacked structure, the self-heating effect (SHE) becomes more and more severe. Buried thermal rail (...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Zhecheng, Liu, Tao, Yang, Jingwen, Chen, Kun, Xu, Saisheng, Wu, Chunlei, Xu, Min, Zhang, David Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536949/
https://www.ncbi.nlm.nih.gov/pubmed/37763913
http://dx.doi.org/10.3390/mi14091751
_version_ 1785112988609413120
author Pan, Zhecheng
Liu, Tao
Yang, Jingwen
Chen, Kun
Xu, Saisheng
Wu, Chunlei
Xu, Min
Zhang, David Wei
author_facet Pan, Zhecheng
Liu, Tao
Yang, Jingwen
Chen, Kun
Xu, Saisheng
Wu, Chunlei
Xu, Min
Zhang, David Wei
author_sort Pan, Zhecheng
collection PubMed
description The complementary field-effect transistor (CFET) with N-type FET (NFET) stacked on P-type FET (PFET) is a promising device structure based on gate-all-around FET (GAAFET). Because of the high-density stacked structure, the self-heating effect (SHE) becomes more and more severe. Buried thermal rail (BTR) technology on top of the buried power rail (BPR) process is proposed to improve heat dissipation. Through a systematical 3D Technology Computer Aided Design (TCAD) simulation, compared to traditional CFET and CFET with BPR only, the thermal resistance ([Formula: see text]) of CFET can be significantly reduced with BTR technology, while the drive capability is also improved. Furthermore, based on the proposed BTR technology, different power delivery structures of top-VDD–top-VSS (TDTS), bottom-VDD–bottom-VSS (BDBS), and bottom-VDD–top-VSS (BDTS) were investigated in terms of electrothermal and parasitic characteristics. The [Formula: see text] of the BTR-BDTS structure is decreased by 5% for NFET and 9% for PFET, and the [Formula: see text] is increased by 2% for NFET and 7% for PFET.
format Online
Article
Text
id pubmed-10536949
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105369492023-09-29 A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET) Pan, Zhecheng Liu, Tao Yang, Jingwen Chen, Kun Xu, Saisheng Wu, Chunlei Xu, Min Zhang, David Wei Micromachines (Basel) Article The complementary field-effect transistor (CFET) with N-type FET (NFET) stacked on P-type FET (PFET) is a promising device structure based on gate-all-around FET (GAAFET). Because of the high-density stacked structure, the self-heating effect (SHE) becomes more and more severe. Buried thermal rail (BTR) technology on top of the buried power rail (BPR) process is proposed to improve heat dissipation. Through a systematical 3D Technology Computer Aided Design (TCAD) simulation, compared to traditional CFET and CFET with BPR only, the thermal resistance ([Formula: see text]) of CFET can be significantly reduced with BTR technology, while the drive capability is also improved. Furthermore, based on the proposed BTR technology, different power delivery structures of top-VDD–top-VSS (TDTS), bottom-VDD–bottom-VSS (BDBS), and bottom-VDD–top-VSS (BDTS) were investigated in terms of electrothermal and parasitic characteristics. The [Formula: see text] of the BTR-BDTS structure is decreased by 5% for NFET and 9% for PFET, and the [Formula: see text] is increased by 2% for NFET and 7% for PFET. MDPI 2023-09-07 /pmc/articles/PMC10536949/ /pubmed/37763913 http://dx.doi.org/10.3390/mi14091751 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pan, Zhecheng
Liu, Tao
Yang, Jingwen
Chen, Kun
Xu, Saisheng
Wu, Chunlei
Xu, Min
Zhang, David Wei
A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET)
title A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET)
title_full A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET)
title_fullStr A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET)
title_full_unstemmed A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET)
title_short A Buried Thermal Rail (BTR) Technology to Improve Electrothermal Characteristics of Complementary Field-Effect Transistor (CFET)
title_sort buried thermal rail (btr) technology to improve electrothermal characteristics of complementary field-effect transistor (cfet)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536949/
https://www.ncbi.nlm.nih.gov/pubmed/37763913
http://dx.doi.org/10.3390/mi14091751
work_keys_str_mv AT panzhecheng aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT liutao aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT yangjingwen aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT chenkun aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT xusaisheng aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT wuchunlei aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT xumin aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT zhangdavidwei aburiedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT panzhecheng buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT liutao buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT yangjingwen buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT chenkun buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT xusaisheng buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT wuchunlei buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT xumin buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet
AT zhangdavidwei buriedthermalrailbtrtechnologytoimproveelectrothermalcharacteristicsofcomplementaryfieldeffecttransistorcfet