Cargando…
Which Algorithm Best Propagates the Meyer–Miller–Stock–Thoss Mapping Hamiltonian for Non-Adiabatic Dynamics?
[Image: see text] A common strategy to simulate mixed quantum-classical dynamics is by propagating classical trajectories with mapping variables, often using the Meyer–Miller–Stock–Thoss (MMST) Hamiltonian or the related spin-mapping approach. When mapping the quantum subsystem, the coupled dynamics...
Autores principales: | Cook, Lauren E., Runeson, Johan E., Richardson, Jeremy O., Hele, Timothy J. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536990/ https://www.ncbi.nlm.nih.gov/pubmed/37704193 http://dx.doi.org/10.1021/acs.jctc.3c00709 |
Ejemplares similares
-
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity
por: Wu, Lian-Ao, et al.
Publicado: (2021) -
Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems
por: Goto, Hayato, et al.
Publicado: (2019) -
Adiabatic theory for slowly varying Hamiltonian systems with applications to beam dynamics
por: Capoani, Federico
Publicado: (2020) -
Quantum adiabatic theorem for unbounded Hamiltonians with a cutoff and its application to superconducting circuits
por: Mozgunov, Evgeny, et al.
Publicado: (2023) -
An Adiabatic theorem for motions which exhibit invariant phase curves
por: Symon, K R
Publicado: (1954)