Cargando…
Treating Semiempirical Hamiltonians as Flexible Machine Learning Models Yields Accurate and Interpretable Results
[Image: see text] Quantum chemistry provides chemists with invaluable information, but the high computational cost limits the size and type of systems that can be studied. Machine learning (ML) has emerged as a means to dramatically lower the cost while maintaining high accuracy. However, ML models...
Autores principales: | Hu, Frank, He, Francis, Yaron, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536991/ https://www.ncbi.nlm.nih.gov/pubmed/37705220 http://dx.doi.org/10.1021/acs.jctc.3c00491 |
Ejemplares similares
-
Machine Learning of Parameters for Accurate Semiempirical
Quantum Chemical Calculations
por: Dral, Pavlo O., et al.
Publicado: (2015) -
Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics
por: Zhou, Guoqing, et al.
Publicado: (2022) -
Accurate virus identification with interpretable Raman signatures by machine learning
por: Ye, Jiarong, et al.
Publicado: (2022) -
Enhanced semiempirical QM methods for biomolecular interactions
por: Yilmazer, Nusret Duygu, et al.
Publicado: (2015) -
A semiempirical method optimized for modeling proteins
por: Stewart, James J. P., et al.
Publicado: (2023)