Cargando…
Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness
[Image: see text] Computational techniques applied to drug discovery have gained considerable popularity for their ability to filter potentially active drugs from inactive ones, reducing the time scale and costs of preclinical investigations. The main focus of these studies has historically been the...
Autores principales: | Conflitti, Paolo, Raniolo, Stefano, Limongelli, Vittorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536999/ https://www.ncbi.nlm.nih.gov/pubmed/37656199 http://dx.doi.org/10.1021/acs.jctc.3c00641 |
Ejemplares similares
-
Improving Small-Molecule Force Field Parameters in Ligand Binding Studies
por: Raniolo, Stefano, et al.
Publicado: (2021) -
Protein–ligand binding with the coarse-grained Martini model
por: Souza, Paulo C. T., et al.
Publicado: (2020) -
Transferring chemical and energetic knowledge between molecular systems with machine learning
por: Heydari, Sajjad, et al.
Publicado: (2023) -
DDT - Drug Discovery Tool: a fast and intuitive graphics user interface for docking and molecular dynamics analysis
por: Aureli, Simone, et al.
Publicado: (2019) -
Conformational plasticity and allosteric communication networks explain Shelterin protein TPP1 binding to human telomerase
por: Aureli, Simone, et al.
Publicado: (2023)