Cargando…
An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor
Risley-prism-based image sensors can expand the imaging field of view through beam control. The larger the top angle of the prism, the higher the magnification of the field of view, but at the same time, it aggravates the problem of imaging aberrations, which also puts higher requirements on the abe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537131/ https://www.ncbi.nlm.nih.gov/pubmed/37765834 http://dx.doi.org/10.3390/s23187777 |
_version_ | 1785113031023263744 |
---|---|
author | Lin, Zhonglin Liu, Wenchao Gan, Jinyu Lu, Jilian Huang, Feng Wu, Xianyu Wang, Weixiong |
author_facet | Lin, Zhonglin Liu, Wenchao Gan, Jinyu Lu, Jilian Huang, Feng Wu, Xianyu Wang, Weixiong |
author_sort | Lin, Zhonglin |
collection | PubMed |
description | Risley-prism-based image sensors can expand the imaging field of view through beam control. The larger the top angle of the prism, the higher the magnification of the field of view, but at the same time, it aggravates the problem of imaging aberrations, which also puts higher requirements on the aberration correction method for the Risley-prism-based image sensor. To improve the speed, accuracy, and stability of the aberration correction process, an automatic calibration method for the Risley-prism-based image sensor is proposed based on a two-axis turntable. The image datasets of the calibration plate with different prism rotation angles and object distances are acquired using a two-axis turntable. Then, the images of the calibration plate are pre-processed using the bicubic interpolation algorithm. The calibration parameters are finally calculated, and parameter optimization is performed. The experimental results verify the feasibility of this automated calibration method. The reprojection error of the calibration is within 0.26 pixels when the distance of the imaging sensor is 3.6 m from the object, and the fine aberration correction results are observed. |
format | Online Article Text |
id | pubmed-10537131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105371312023-09-29 An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor Lin, Zhonglin Liu, Wenchao Gan, Jinyu Lu, Jilian Huang, Feng Wu, Xianyu Wang, Weixiong Sensors (Basel) Article Risley-prism-based image sensors can expand the imaging field of view through beam control. The larger the top angle of the prism, the higher the magnification of the field of view, but at the same time, it aggravates the problem of imaging aberrations, which also puts higher requirements on the aberration correction method for the Risley-prism-based image sensor. To improve the speed, accuracy, and stability of the aberration correction process, an automatic calibration method for the Risley-prism-based image sensor is proposed based on a two-axis turntable. The image datasets of the calibration plate with different prism rotation angles and object distances are acquired using a two-axis turntable. Then, the images of the calibration plate are pre-processed using the bicubic interpolation algorithm. The calibration parameters are finally calculated, and parameter optimization is performed. The experimental results verify the feasibility of this automated calibration method. The reprojection error of the calibration is within 0.26 pixels when the distance of the imaging sensor is 3.6 m from the object, and the fine aberration correction results are observed. MDPI 2023-09-09 /pmc/articles/PMC10537131/ /pubmed/37765834 http://dx.doi.org/10.3390/s23187777 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lin, Zhonglin Liu, Wenchao Gan, Jinyu Lu, Jilian Huang, Feng Wu, Xianyu Wang, Weixiong An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor |
title | An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor |
title_full | An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor |
title_fullStr | An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor |
title_full_unstemmed | An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor |
title_short | An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor |
title_sort | automatic calibration method for the field of view aberration in a risley-prism-based image sensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537131/ https://www.ncbi.nlm.nih.gov/pubmed/37765834 http://dx.doi.org/10.3390/s23187777 |
work_keys_str_mv | AT linzhonglin anautomaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT liuwenchao anautomaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT ganjinyu anautomaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT lujilian anautomaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT huangfeng anautomaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT wuxianyu anautomaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT wangweixiong anautomaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT linzhonglin automaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT liuwenchao automaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT ganjinyu automaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT lujilian automaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT huangfeng automaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT wuxianyu automaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor AT wangweixiong automaticcalibrationmethodforthefieldofviewaberrationinarisleyprismbasedimagesensor |