Cargando…
Anthropogenic Object Localization: Evaluation of Broad-Area High-Resolution Imagery Scans Using Deep Learning in Overhead Imagery
Too often, the testing and evaluation of object detection, as well as the classification techniques for high-resolution remote sensing imagery, are confined to clean, discretely partitioned datasets, i.e., the closed-world model. In recent years, the performance on a number of benchmark datasets has...
Autores principales: | Hurt, J. Alex, Popescu, Ilinca, Davis, Curt H., Scott, Grant J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537164/ https://www.ncbi.nlm.nih.gov/pubmed/37765824 http://dx.doi.org/10.3390/s23187766 |
Ejemplares similares
-
Self-supervised learning for using overhead imagery as maps in outdoor range sensor localization
por: Tang, Tim Y., et al.
Publicado: (2021) -
Automated object recognition in high-resolution optical remote sensing imagery
por: Yao, Yazhou, et al.
Publicado: (2023) -
Mental imagery of object motion in weightlessness
por: Gravano, Silvio, et al.
Publicado: (2021) -
Fluctuations in anthropogenic nighttime lights from satellite imagery for five cities in Niger and Nigeria
por: Bharti, Nita, et al.
Publicado: (2018) -
Imagery-related eye movements in 3D space depend on individual differences in visual object imagery
por: Chiquet, Sandra, et al.
Publicado: (2022)