Cargando…

Effects of Me–Solvent Interactions on the Structure and Infrared Spectra of MeTFSI (Me = Li, Na) Solutions in Carbonate Solvents—A Test of the GFN2-xTB Approach in Molecular Dynamics Simulations

We investigated the performance of the computationally effective GFN2-xTB approach in molecular dynamics (MD) simulations of liquid electrolytes for lithium/sodium batteries. The studied systems were LiTFSI and NaTFSI solutions in ethylene carbonate or fluoroethylene carbonate and the neat solvents....

Descripción completa

Detalles Bibliográficos
Autores principales: Wróbel, Piotr, Eilmes, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537190/
https://www.ncbi.nlm.nih.gov/pubmed/37764512
http://dx.doi.org/10.3390/molecules28186736
Descripción
Sumario:We investigated the performance of the computationally effective GFN2-xTB approach in molecular dynamics (MD) simulations of liquid electrolytes for lithium/sodium batteries. The studied systems were LiTFSI and NaTFSI solutions in ethylene carbonate or fluoroethylene carbonate and the neat solvents. We focused on the structure of the electrolytes and on the manifestations of ion–solvent interactions in the vibrational spectra. The IR spectra were calculated from MD trajectories as Fourier transforms of the dipole moment. The results were compared to the data obtained from ab initio MD. The spectral shifts of the carbonyl stretching mode calculated from the GFN2-xTB simulations were in satisfactory agreement with the ab initio MD data and the experimental results for similar systems. The performance in the region of molecular ring vibrations was significantly worse. We also found some differences in structural data, suggesting that the GFN2-xTB overestimates interactions of Me ions with TFSI anions and Na(+) binding to solvent molecules. We conclude that the GFN2-xTB method is an alternative worth considering for MD simulations of liquids, but it requires testing of its applicability for new systems.