Cargando…
Reactive Oxygen Species in Drought-Induced Stomatal Closure: The Potential Roles of NPR1
Stomatal closure is a vital, adaptive mechanism that plants utilize to minimize water loss and withstand drought conditions. We will briefly review the pathway triggered by drought that governs stomatal closure, with specific focuses on salicylic acid (SA) and reactive oxygen species (ROS). We propo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537201/ https://www.ncbi.nlm.nih.gov/pubmed/37765358 http://dx.doi.org/10.3390/plants12183194 |
Sumario: | Stomatal closure is a vital, adaptive mechanism that plants utilize to minimize water loss and withstand drought conditions. We will briefly review the pathway triggered by drought that governs stomatal closure, with specific focuses on salicylic acid (SA) and reactive oxygen species (ROS). We propose that the non-expressor of PR Gene 1 (NPR1), a protein that protects plants during pathogen infections, also responds to SA during drought to sustain ROS levels and prevent ROS-induced cell death. We will examine the evidence underpinning this hypothesis and discuss potential strategies for its practical implementation. |
---|