Cargando…
An Efficient Brain Tumor Segmentation Method Based on Adaptive Moving Self-Organizing Map and Fuzzy K-Mean Clustering
Brain tumors in Magnetic resonance image segmentation is challenging research. With the advent of a new era and research into machine learning, tumor detection and segmentation generated significant interest in the research world. This research presents an efficient tumor detection and segmentation...
Autores principales: | Dalal, Surjeet, Lilhore, Umesh Kumar, Manoharan, Poongodi, Rani, Uma, Dahan, Fadl, Hajjej, Fahima, Keshta, Ismail, Sharma, Ashish, Simaiya, Sarita, Raahemifar, Kaamran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537273/ https://www.ncbi.nlm.nih.gov/pubmed/37765873 http://dx.doi.org/10.3390/s23187816 |
Ejemplares similares
-
Hybrid model for precise hepatitis-C classification using improved random forest and SVM method
por: Lilhore, Umesh Kumar, et al.
Publicado: (2023) -
HIDM: Hybrid Intrusion Detection Model for Industry 4.0 Networks Using an Optimized CNN-LSTM with Transfer Learning
por: Lilhore, Umesh Kumar, et al.
Publicado: (2023) -
A convolutional neural network for face mask detection in IoT-based smart healthcare systems
por: S., Bose, et al.
Publicado: (2023) -
Medical Image Despeckling Using the Invertible Sparse Fuzzy Wavelet Transform with Nature-Inspired Minibatch Water Wave Swarm Optimization
por: Amarnath, Ahila, et al.
Publicado: (2023) -
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
por: Balyan, Amit Kumar, et al.
Publicado: (2022)