Cargando…

Benzylfentanyl as a Surrogate Template for Fentanyl-Selective Imprinted Polymers

The illicit use of fentanyl has led to hundreds of thousands of opioid-related deaths worldwide. Therefore, the detection of fentanyl by law enforcement and recreational users is of utmost importance. However, current detection methods are expensive, time-consuming, require special storage condition...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasan, Md. Ragib, Spivak, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537390/
https://www.ncbi.nlm.nih.gov/pubmed/37765523
http://dx.doi.org/10.3390/polym15183669
Descripción
Sumario:The illicit use of fentanyl has led to hundreds of thousands of opioid-related deaths worldwide. Therefore, the detection of fentanyl by law enforcement and recreational users is of utmost importance. However, current detection methods are expensive, time-consuming, require special storage conditions, and necessitate complex instrumentation that is generally unportable and requires skilled personnel to operate. An alternative approach would be using molecularly imprinted polymers (MIPs) as the recognition component of a handheld sensor, testing strip, or color-based assay. In this work, a molecularly imprinted polymer was constructed using the functional monomer methacrylic acid (MAA) and the cross-linking monomer ethyleneglycol dimethacrylate (EGDMA), with benzylfentanyl (Bfen) as the template. The use of benzylfentanyl is advantageous because it closely mimics fentanyl’s structure but does not cause any physiological narcotic effects. Important studies herein determined the optimum ratio of the template/functional monomer, with subsequent evaluations of selectivity of the MIP for the template and fentanyl versus the commonly encountered narcotics such as methamphetamine, cocaine, and heroin. The data obtained from the HPLC analysis showed that the Bfen-MIP was successful in selectively binding the template and actual fentanyl, better than other common narcotics.